Skip to main content
Log in

A novel method to reduce the motor imagery BCI illiteracy

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

To reduce the motor imagery brain-computer interface (MI-BCI) illiteracy phenomenon and improve the classification accuracy, this paper proposed a novel method combining paradigm selection and Riemann distance classification. Firstly, a novel sensitivity-based paradigm selection (SPS) algorithm is designed for the optimization of classification to find the best classification pattern through a sensitive indicator. Then, a generalized Riemann minimum distance mean (GRMDM) classifier is proposed by introducing a weight factor to fuse the Log-Euclidean Metric classifier and the Riemannian Stein divergence classifier. The experimental results show that the proposed method achieves a better performance for multi-class motor imagery tasks. The average classification accuracy on the BCI competition IV dataset2a is 80.98%, which is 11.04% higher than Stein divergence classifier on the original two-class paradigm. Furthermore, the proposed method demonstrates its capacity on reducing MI-BCI illiteracy.

Here we investigate whether the BCI illiteracy phenomenon can be reduced through sensitivity-based paradigm selection (SPS) method and generalized Riemann minimum distance mean (GRMDM) classifier when performing motor imagery tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chaudhary U, Birbaumer N, Ramos-Murguialday A (2016) Brain-computer interfaces for communication and rehabilitation. Nat Rev Neurol 12(9):513–525

    Article  Google Scholar 

  2. Tangermann MW (2008) Playing Pinball with non-invasive BCI, no. December 2013

  3. Barachant A, Bonnet S, Congedo M, Jutten C (2012) Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans Biomed Eng 59(4):920–928

    Article  Google Scholar 

  4. Ang KK, Chin ZY, Wang C, Guan C, Zhang H (2012) Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front Neurosci 6(MAR):1–9

    Google Scholar 

  5. Sadatnejad K, Shiry Ghidary S (2016) Kernel learning over the manifold of symmetric positive definite matrices for dimensionality reduction in a BCI application. Neurocomputing 179:152–160

    Article  Google Scholar 

  6. Davoudi A, Ghidary SS, Sadatnejad K (2017) Dimensionality reduction based on distance preservation to local mean for symmetric positive definite matrices and its application in brain-computer interfaces

  7. Gaur P, Pachori RB, Wang H, Prasad G (2018) A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry. Expert Syst Appl 95:201–211

    Article  Google Scholar 

  8. Guan S, Zhao K, Yang S (2019) Motor imagery EEG classification based on decision tree framework and riemannian geometry. Computational Intelligence and Neuroscience, vol 2019

  9. dos Santos EM, Cassani R, Falk TH, Fraga FJ (2020) Improved motor imagery brain-computer interface performance via adaptive modulation filtering and two-stage classification. Biomedical Signal Processing and Control 57:101812

    Article  Google Scholar 

  10. Zhang Y, Zhou G, Jin J, Wang X, Cichocki A (2015) Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface. J Neurosci Methods 255:85–91

    Article  CAS  Google Scholar 

  11. Dong E, Li C, Li L, Du S, Belkacem AN, Chen C (2017) Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain–computer interfaces. Med Biol Eng Comput 55(10):1809–1818

    Article  Google Scholar 

  12. Dong E, Zhu G, Chen C, Tong J, Jiao Y, Du S (2018) Introducing chaos behavior to kernel relevance vector machine (RVM) for four-class EEG classification. PLoS ONE 13(6):1–19

    CAS  Google Scholar 

  13. Pfurtscheller G (2010) The hybrid BCI, Frontiers in Neuroscience, no. APRIL

  14. Dong E, Zhou K, Tong J, Du S (2020) A novel hybrid kernel function relevance vector machine for multi-task motor imagery EEG classification. Biomedical Signal Processing and Control 60:101991

    Article  Google Scholar 

  15. Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F (2018) A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update. J Neural Eng 15(3)

  16. Congedo M, Barachant A, Bhatia R (2017) Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain-Computer Interfaces 4(3):155–174

    Article  Google Scholar 

  17. Barachant A, Bonnet S, Congedo M, Jutten C Common spatial pattern revisited by Riemannian geometry, 2010 IEEE International Workshop on Multimedia Signal Processing, MMSP2010, no. May 2014 472–476, vol 2010

  18. Barachant A, Bonnet S, Congedo M, Jutten C (2013) Classification of covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing 112:172–178

    Article  Google Scholar 

  19. Pennec X, Fillard P, Ayache N (2006) A riemannian framework for tensor computing. Int J Comput Vis 66(1):41–66

    Article  Google Scholar 

  20. Chen KX, Ren JY, Wu XJ, Kittler J (2020) Covariance descriptors on a Gaussian manifold and their application to image set classification. Pattern Recognit 107:107463

    Article  Google Scholar 

  21. Chen KX, Wu XJ, Ren JY, Wang R, Kittler J (2019) More about covariance descriptors for image set coding: Log-euclidean framework based kernel matrix representation. Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019:2923–2932

    Google Scholar 

  22. Arsigny V, Fillard P, Pennec X, Ayache N (2011) Geometric means in a novel vector space structure on symmetric positive-definite matrices. Siam J Matrix Anal Appl 29(1):328–347

    Article  Google Scholar 

  23. Sra S (2012) A new metric on the manifold of kernel matrices with application to matrix geometric means. Adv Neural Inform Process Syst 1:144–152

    Google Scholar 

  24. Zheng M, Yang B, Xie Y (2020) EEG Classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system. Med Biol Eng Comput 58(7):1515–1528

    Article  Google Scholar 

  25. Mebarkia K, Reffad A (2019) Multi optimized SVM classifiers for motor imagery left and right hand movement identification. Australas Phys Eng Sci Med 42(4):949–958

    Article  Google Scholar 

  26. Zhang Y, Nam CS, Zhou G, Jin J, Wang X, Cichocki A (2019) Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE Trans Cybern 49(9):3322–3332

    Article  Google Scholar 

  27. Xie X, Yu ZL, Gu Z, Zhang J, Cen L, Li Y (2018) Bilinear regularized locality preserving learning on riemannian graph for motor imagery BCI. IEEE Trans Neural Syst Rehabilit Eng 26(3):698–708

    Article  Google Scholar 

  28. Yue J, Zhou Z, Jiang J, Liu Y, Hu D (2012) Balancing a simulated inverted pendulum through motor imagery: An EEG-based real-time control paradigm. Neurosci Lett 524(2):95–100

    Article  CAS  Google Scholar 

  29. Feng J, Yin E, Jin J, Saab R, Daly I, Wang X, Hu D, Cichocki A (2018) Towards correlation-based time window selection method for motor imagery BCIs. Neural Netw 102:87–95

    Article  Google Scholar 

  30. Lee MH, Kwon OY, Kim YJ, Kim HK, Lee YE, Williamson J, Fazli S, Lee SW, dataset EEG (2019) OpenBMI toolbox for three BCI paradigms An investigation into BCI illiteracy. GigaScience 8(5):1–15

    Article  Google Scholar 

  31. Ahn M, Cho H, Ahn S, Jun SC (2013) High theta and low alpha powers may be indicative of BCI-illiteracy in motor imagery. PLoS ONE 8(11)

  32. Vidaurre C, Blankertz B (2009) Towards a cure for bci illiteracy. Brain Topogr 23(2):194–198

    Article  Google Scholar 

  33. Allison B, Lüth T., Valbuena D, Teymourian A, Volosyak I, Gräser A, demographics BCI (2010) How many (and what kinds of) people can use an SSVEP BCI?. IEEE Trans Neural Syst Rehabilit Eng 18(2):107–116

    Article  Google Scholar 

  34. Gandhi V (2007) Toward Brain Computer Interfacing[J]. Mit Press, 16(3):218–221

    Google Scholar 

  35. Graimann B, Pfurtscheller G, Allison B, et al. (2010) Brain-computer interfaces [M]. Springer, Berlin Heidelberg

    Book  Google Scholar 

  36. Review B (1906) A Brief Introduction to the Infinitesimal Calculus; Designed Especially to Aid in Reading Mathematical Economics and Statistics.[J]. J Royal Stat Soc 69(3):593

    Google Scholar 

  37. Congedo M, Rodrigues PL, Bouchard F, Barachant A, Jutten C (2017) A closed-form unsupervised geometry-aware dimensionality reduction method in the Riemannian Manifold of SPD matrices. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS, pp 3198–3201

  38. Wang Z, Vemuri BC (2004) An affine invariant tensor dissimilarity measure and its applications to tensor-valued image segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1:0–5

    Google Scholar 

  39. Congedo M, Afsari B, Barachant A, Moakher M (2015) Approximate joint diagonalization and geometric mean of symmetric positive definite matrices. PLoS ONE 10(4):1–25

    Article  Google Scholar 

  40. Michael T, Klaus-Robert M, Ad A, Niels B, Christoph B, Clemens B, Robert L, Carsten M, Miller KJ, Müller-Putz GR (2012) Review of the bci competition iv. Frontiers in Neuroscience 6

  41. Delorme A, Makeig S (2004) EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  Google Scholar 

  42. Townsend JT (1971) Erratum to: Theoretical analysis of an alphabetic confusion matrix. Percept Psychophys 10(4):256

    Article  Google Scholar 

Download references

Funding

This work was partially supported by the Natural Science Foundation of Tianjin (No.18JCYBJC87700), and South African National Research Foundation Incentive Grant (No. 114911).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzeng Dong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Du, S. & Dong, E. A novel method to reduce the motor imagery BCI illiteracy. Med Biol Eng Comput 59, 2205–2217 (2021). https://doi.org/10.1007/s11517-021-02449-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02449-0

Keywords

Navigation