Abstract
Purpose
The accuracy of the CyberKnife Synchrony Respiratory Tracking System is dependent on the breathing pattern of a patient. Therefore, the tracking error in each patient must be determined. Support vector regression (SVR) can be used to easily identify the tracking error in each patient. This study aimed to develop a system with SVR that can predict tracking error according to a patient’s respiratory waveform.
Methods
Datasets of the respiratory waveforms of 93 patients were obtained. The feature variables were variation in respiration amplitude, tumor velocity, and phase shift between tumor and the chest wall, and the target variable was tracking error. A learning model was evaluated with tenfold cross-validation. We documented the difference between the predicted and actual tracking errors and assessed the correlation coefficient and coefficient of determination.
Results
The average difference and maximum difference between the actual and predicted tracking errors were 0.57 ± 0.63 mm and 2.1 mm, respectively. The correlation coefficient and coefficient of determination were 0.86 and 0.74, respectively.
Conclusion
We developed a system for obtaining tracking error by using SVR. The accuracy of such a system is clinically useful. Moreover, the system can easily evaluate tracking error.
Graphical abstract

We developed a system that can be used to predict the tracking error of SRTS in the CyberKnife Robotic Radiosurgery System using machine learning. The feature variables were the breathing parameters, and the target variable was the tracking error. We used support vector regression algorithm.
This is a preview of subscription content,
to check access.











References
Fraass B, Doppke K, Hunt M, Kutcher G, Starkschall G, Stern R, Van Dyke J (1998) American association of physicists in medicine radiation therapy committee task group 53: Quality assurance for clinical radiotherapy treatment planning. Med Phys 25:1773–1829. https://doi.org/10.1118/1.598373
Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, Kapatoes JM, Low DA, Murphy MJ, Murray BR, Ramsey CR, Van Herk MB, Vedam SS, Wong JW, Yorke E (2006) The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33:3874–3900. https://doi.org/10.1118/1.2349696
Murphy MJ, Balter J, Balter S, BenComo JA, Das IJ, Jiang SB, Ma CM, Olivera GH, Rodebaugh RF, Ruchala KJ, Shirato H, Yin FF (2007) The management of imaging dose during image-guided radiotherapy: report of the AAPM Task Group 75. Med Phys 34:4041–4063. https://doi.org/10.1118/1.2775667
Klein EE, Hanley J, Bayouth J, Yin FF, Simon W, Dresser S, Serago C, Aguirre F, Ma L, Arjomandy B, Liu C, Sandin C, Holmes T (2009) Task group 142 report: quality assurance of medical accelerators. Med Phys 36:4197–4212. https://doi.org/10.1118/1.3190392
Langen KM, Papanikolaou N, Balog J, Crilly R, Followill D, Goddu SM, Grant W, Olivera G, Ramsey CR, Shi C, AAPM Task Group 148 (2010) QA for helical tomotherapy: report of the AAPM Task Group 148. Med Phys 37:4817–4853. https://doi.org/10.1118/1.3462971
Dieterich S, Cavedon C, Chuang CF, Crilly R, Followill D, Goddu SM, Grant W, Olivera G, Ramsey CR, Shi C, AAPM Task Group 148 (2011) Report of AAPM TG 135: quality assurance for robotic radiosurgery. Med Phys 38:2914–2936. https://doi.org/10.1118/1.3579139
Bissonnette JP, Balter PA, Dong L, Langen KM, Lovelock DM, Miften M, Moseley DJ, Pouliot J, Sonke JJ, Yoo S (2012) Quality assurance for image-guided radiation therapy utilizing CT-based technologies: a report of the AAPM TG-179. Med Phys 39:1946–1963. https://doi.org/10.1118/1.3690466
Leksell L (1983) Stereotactic radiosurgery. J Neurol Neurosurg Psychiatry 46:797–803. https://doi.org/10.1136/jnnp.46.9.797
Adler JR Jr, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL (1997) The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 69:124–128. https://doi.org/10.1159/000099863
Adler JR Jr, Murphy MJ, Chang SD, Hancock SL (1999)Image-guided robotic radiosurgery. Neurosurgery. 44:1299–1306
Muacevic A, Staehler M, Drexler C, Wowra B, Reiser M, Tonn JC (2006) Technical description, phantom accuracy, and clinical feasibility for fiducial-free frameless real-time image-guided spinal radiosurgery. J Neurosurg Spine 5:303–312. https://doi.org/10.3171/spi.2006.5.4.303
Ho AK, Fu D, Cotrutz C, Hancock SL, Chang SD, Gibbs IC, Maurer CR, Adler JR (2007) A study of the accuracy of cyberknife spinal radiosurgery using skeletal structure tracking. Neurosurgery 60:147–156. https://doi.org/10.1227/01.NEU.0000249248.55923.EC
Furweger C, Drexler C, Kufeld M, Muacevic A, Wowra B (2010) Advances in fiducial-free image-guidance for spinal radiosurgery with CyberKnife--a phantom study. J Appl Clin Med Phys 12:3446. https://doi.org/10.1120/jacmp.v12i2.3446
Brown WT, Wu X, Fayad F, Fowler JF, Amendola BE, García S, Han H, de la Zerda A, Bossart E, Huang Z, Schwade JG (2007) CyberKnife radiosurgery for stage I lung cancer: results at 36 months. Clin Lung Cancer 8:488–492. https://doi.org/10.3816/CLC.2007.n.033
Goyal K, Einstein D, Yao M, Kunos C, Barton F, Singh D, Siegel C, Stulberg J, Sanabria J (2010) Cyberknife stereotactic body radiation therapy for nonresectable tumors of the liver: preliminary results. HPB Surg 2010:309780. https://doi.org/10.1155/2010/309780
Schweikard A, Shiomi H, Adler J (2004) Respiration tracking in radiosurgery. Med Phys 31:2738–2741. https://doi.org/10.1118/1.1774132
Ozhasoglu C, Saw CB, Chen H, Burton S, Komanduri K, Yue NJ, Huq SM, Heron DE (2008)Synchrony–cyberknife respiratory compensation Technology. Med Dosim 33:117–123. https://doi.org/10.1016/j.meddos.2008.02.004
The International Commission on Radiation Units and Measurements (2010) J ICRU 10:NP.2–NPNP. https://doi.org/10.1093/jicru/ndq025
Mischa H, Jean BP, Joost N, Poll J, Levendag P, Heijman B (2009) Clinical accuracy of the respiratory tumor tracking system oh the cyberkife: assessment by analysis of log files. Int J Radiat Oncol Boid Phys 74:297–303. https://doi.org/10.1016/j.ijrobp.2008.12.041
Pepin EW, Wu H, Zhang Y, Lord B (2011) Correlation and prediction uncertainties in the cyberknife synchrony respiratory tracking system. Med Phys 38:4036–4044. https://doi.org/10.1118/1.3596527
Inoue M, Shiomi H, Iwata H, Taguchi J, Okawa K, Kikuchi C, Inada K, Iwabuchi M, Murai T, Koike I, Tatewaki K, Ohta S, Inoue T (2015) Development of system using beam’s eye view images to measure respiratory motion tracking errors in image-guided robotic radiosurgery system. J Appl Clin Med Phys 16:100–111. https://doi.org/10.1120/jacmp.v16i1.5049
Sumida I, Shiomi H, Higashinaka N, Murashima Y, Miyamoto Y, Yamazaki H, Mabuchi N, Tsuda E, Ogawa K (2016) Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid. J Appl Clin Med Phys 17:74–84. https://doi.org/10.1120/jacmp.v17i2.5914
Akino Y, Sumida I, Shiomi H, Higashinaka N, Murashima Y, Hayashida M, Mabuchi N, Ogawa K (2018) Evaluation of the accuracy of the cyberknife synchrony respiratory tracking system using a plastic scintillator. Med Phys 45:3506–3515. https://doi.org/10.1002/mp.13028
Movahed RA, Mohammadi E, Orooji M (2019) Automatic segmentation of Sperm’s parts in microscopic images of human semen smears using concatenated learning approaches. Comput Biol Med 109:242–253. https://doi.org/10.1016/j.compbiomed.2019.04.032
Mahbod A, Schaefer G, Ellinger I, Ecker R, Pitiot A, Wang C (2019) Fusing fine-tuned deep features for skin lesion classification. Comput Med Imaging Graph 71:19–29. https://doi.org/10.1016/j.compmedimag.2018.10.007
Khameneh FD, Razavi S, Kamasak M (2019) Automated segmentation of cell membranes to evaluate HER2 status in whole slide images using a modified deep learning network. Comput Biol Med 110:164–174. https://doi.org/10.1016/j.compbiomed.2019.05.020
Jun TJ, Kang SJ, Lee JG, Kweon J, Na W, Kang D, Kim D, Kim D, Kim YH (2019) Automated detection of vulnerable plaque in intravascular ultrasound images. Med Biol Eng Comput 57:863–876. https://doi.org/10.1007/s11517-018-1925-x
Ciritsis A, Rossi C, Eberhard M, Marcon M, Becker AS, Boss A (2019) Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making. Eur Radiol 29:5458–5468. https://doi.org/10.1007/s00330-019-06118-7
Cheng CT, Ho TY, Lee TY, Chang CC, Chou CC, Chen CC, Chung IF, Liao CH (2019) Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs. Eur Radiol 29:5469–5477. https://doi.org/10.1007/s00330-019-06167-y
Liu F, Zhou Z, Samsonov A, Blankenbaker D, Larison W, Kanarek A, Lian K, Kambhampati S, Kijowski R (2018) Deep learning approach for evaluating knee mr images: Achieving high diagnostic performance for cartilage lesion detection. Radiology. 289:160–169. https://doi.org/10.1148/radiol.2018172986
Alkadi R, Taher F, El-Baz A, Werghi N (2019) A deep learning-based approach for the detection and localization of prostate cancer in T2 magnetic resonance images. J Digit Imaging 32:793–807. https://doi.org/10.1007/s10278-018-0160-1
Ernst F, Schlaefer A, Schweikard A (2011) Predicting the outcome of respiratory motion prediction. Med Phys 38:5569–5581. https://doi.org/10.1118/1.3633907
Krauss A, Nill S, Oelfke U (2011) The comparative performance of four respiratory motion predictors for real-time tumour tracking. Phys Med Biol 56:5303–5318. https://doi.org/10.1088/0031-9155/56/16/015
Ernst F, Dürichen R, Schlaefer A, Schweikard A (2013) Evaluating and comparing algorithms for respiratory motion prediction. Phys Med Biol 58:3911–3930. https://doi.org/10.1088/0031-9155/58/11/3911
Mafi M, Moghadam SM (2020)Real-time prediction of tumor motion using a dynamic neural network. Med Biol Eng Comput 58:529–539. https://doi.org/10.1007/s11517-019-02096-6
Shaw L, Routray A (2016) A critical comparison between SVM and k-SVM in the classification of Kriya Yoga meditation state-allied EEG. In: 2016 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). IEEE, New Jersey, pp 134–138
Vapnik VN (1995) The nature of statistical learning theory. Springer-Verlag, Berlin
Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
Cortes C, Vapnik V (1995)Support-vector networks. Mach Learn 20:273–297. https://doi.org/10.1007/BF00994018
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B (2011) Scikit-learn: Machine learning in Python. J Mach Learn Res 12:2825–2830
Inoue M, Okawa K, Taguchi J, Hirota Y, Yanagiya Y, Kikuchi C, Iwabuchi M, Murai T, Iwata H, Shiomi H, Koike I, Tatewaki K, Ohta S (2019) Factors affecting the accuracy of respiratory tracking of the image-guided robotic radiosurgery system. Jpn J Radiol 37:727–734. https://doi.org/10.1007/s11604-019-00859-7
Akino Y, Shiomi H, Sumida I, Isohashi F, Seo Y, Suzuki O, Tamari K, Otani K, Higashinaka N, Hayashida M, Mabuchi N, Ogawa K (2019) Impacts of respiratory phase shifts on motion-tracking accuracy of the CyberKnife SynchronyTM Respiratory Tracking System. Med Phys 46:3757–3766. https://doi.org/10.1002/mp.13523
Scholkopf B, Kah-Kay S, Burges CJC, Girosi F, Niyogi P, Poggio T, Vapnik V (1997) Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans Signal Proces 45:2758–2765. https://doi.org/10.1109/78.650102
Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13:281–305
Huang HH, Xu T, Yang J (2014) Comparing logistic regression, support vector machines, and permanental classification methods in predicting hypertension. BMC Proc 8(Suppl 1):S96. https://doi.org/10.1186/1753-6561-8-S1-S96
Manoochehri Z, Salari N, Rezaei M, Khazaie H, Manoochehri S, Pavah BK (2018) Comparison of support vector machine based on genetic algorithm with logistic regression to diagnose obstructive sleep apnea. J Res Med Sci 23:65. https://doi.org/10.4103/jrms.JRMS_357_17
Golpour P, Ghayour-Mobarhan M, Saki A, Esmaily H, Taghipour A, Tajfard M, Ghazizadeh H, Moohebati M, Ferns GA (2020) Comparison of support vector machine, naive bayes and logistic regression for assessing the necessity for coronary angiography. Int J Environ Res Public Health 17(18). https://doi.org/10.3390/ijerph17186449
Acknowledgements
The authors would like to thank MARUZEN-YUSHODO Co. Ltd. (https://kw.maruzen.co.jp/kousei-honyaku/) for the English language editing.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Okawa, K., Inoue, M. & Sakae, T. Development of a tracking error prediction system for the CyberKnife Synchrony Respiratory Tracking System with use of support vector regression. Med Biol Eng Comput 59, 2409–2418 (2021). https://doi.org/10.1007/s11517-021-02445-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-021-02445-4