Skip to main content

Advertisement

Log in

Associating brain imaging phenotypes and genetic in Alzheimer’s disease via JSCCA approach with autocorrelation constraints

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Imaging genetics research can explore the potential correlation between imaging and genomics. Most association analysis methods cannot effectively use the prior knowledge of the original data. In this respect, we add the prior knowledge of each original data to mine more effective biomarkers. The study of imaging genetics based on the sparse canonical correlation analysis (SCCA) is helpful to mine the potential biomarkers of neurological diseases. To improve the performance and interpretability of SCCA, we proposed a penalty method based on the autocorrelation matrix for discovering the possible biological mechanism between single nucleotide polymorphisms (SNP) variations and brain regions changes of Alzheimer’s disease (AD). The addition of the penalty allows the proposed algorithm to analyze the correlation between different modal features. The proposed algorithm obtains more biologically interpretable ROIs and SNPs that are significantly related to AD, which has better anti-noise performance. Compared with other SCCA-based algorithms (JCB-SCCA, JSNMNMF), the proposed algorithm can still maintain a stronger correlation with ground truth even when the noise is larger. Then, we put the regions of interest (ROI) selected by the three algorithms into the SVM classifier. The proposed algorithm has higher classification accuracy. Also, we use ridge regression with SNPs selected by three algorithms and four AD risk ROIs. The proposed algorithm has a smaller root mean square error (RMSE). It shows that proposed algorithm has a good ability in association recognition and feature selection. Furthermore, it selects important features more stably, improving the clinical diagnosis of new potential biomarkers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thompson PM, Martin NG, Wright MJ (2010) Imaging genomics. Curr Opin Neurol 23(4):368–373

    Article  Google Scholar 

  2. Hariri AR, Weinberger DR (2003) Imaging genomics[J]. Br Med Bull 65:259

    Article  CAS  Google Scholar 

  3. Daniela M, Witten, et al (2009) Extensions of sparse canonical correlation analysis with applications to genomic data. Stat Appl Genet Molec Biol 8(1):1–27

    Google Scholar 

  4. Shen L, Risacher SL, Du L et al (2014) A novel structure-aware sparse learning algorithm for brain imaging genetics. Med Image Comput Comput Assist Interv 17(3):329–336

    PubMed  PubMed Central  Google Scholar 

  5. Christopher, Mark, Tang, Li, Fingert, John H, et al. Automated discovery of structural features of the optic nerve head on the basis of image and genetic data[J]. 2014.

  6. Lin D, Calhoun VD, Wang YP (2014) Correspondence between fMRI and SNP data by group sparse canonical correlation analysis[J]. Med Image Anal 18(6):891–902

    Article  Google Scholar 

  7. Hua W, Feiping N, Heng H et al (2012) From phenotype to genotype: an association study of longitudinal phenotypic markers to Alzheimer’s disease relevant SNPs[J]. Bioinformatics 28(18):619–625

  8. Hua W, Feiping N, Heng H et al (2012) Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort[J]. Bioinformatics 28(2):229–237

  9. Vounou M, Koritakova E, Wolz R, Stein J, Thompson P, Rueckert D, Montana G (2011) Sparse reduced-rank regression detects genetic associations with voxel wise longitudinal phenotypes in Alzheimer’s disease. Neuroimage 60:700–716. https://doi.org/10.1016/j.neuroimage.2011.12.029

  10. Meda SA, Narayanan B, Liu J et al (2012) A large scale multivariate parallel ICA method reveals novel imaging–genetic relationships for Alzheimer’s disease in the ADNI cohort[J]. Neuroimage 60(3):1608–1621

    Article  Google Scholar 

  11. Du L, Yan J, Kim S, Risacher S, Huang H, Inlow M, Moore J, Saykin A, Shen L (2014) A novel structure-aware sparse learning algorithm for brain imaging genetics. Med Image Comput Assist Interv 17:329–336. https://doi.org/10.1007/978-3-319-10443-0_42

    Article  Google Scholar 

  12. Du L, Liu K, Yao X, Risacher S, Han J, Saykin A, Guo L, Shen Li (2020) Detecting genetic associations with brain imaging phenotypes in Alzheimer’s disease via a novel structured SCCA approach. Med Image Anal 61:101656. https://doi.org/10.1016/j.media.2020.101656

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jingwen Y, Lei D, Sungeun K et al (2014) Transcriptome-guided amyloid imaging genetic analysis via a novel structured sparse learning algorithm[J]. Bioinformatics 30(17):564–571

    Article  Google Scholar 

  14. Hao X, et al. (2017)“Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer's Disease.” Scientific reports, 7 p.  44272. https://doi.org/10.1038/srep44272

  15. Kim M, Won JH, Youn J et al (2019) Joint-connectivity-based sparse canonical correlation analysis of imaging genetics for detecting biomarkers of Parkinson’s disease[J]. IEEE Trans Med Imaging 39(1):23–34

  16. Fang J, Lin D, Schulz C et al (2016) Joint sparse canonical correlation analysis for detecting differential imaging genetics modules[J]. Bioinformatics 32:3480–3488

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Daniela M (2009) Witten, Robert Tibshirani, Trevor Hastie, A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10(3):515–534

    Article  Google Scholar 

  18. Tibshirani WRJ (2009) Extensions of sparse canonical correlation analysis with applications to genomic data[J]. Stat Appl Genet Molec Biol 8(1):28

    Article  Google Scholar 

  19. Hoefling H (2010) A path algorithm for the fused lasso signal approximator[J]. J Comput Graph Stats 19(4):984–1006

    Article  Google Scholar 

  20. Deng J, Zeng W, Kong W et al (2019) Multi-constrained joint non- negative matrix factorization with application to imaging genomic study of lung metastasis in soft tissue sarcomas[J]. IEEE Trans Biomed Eng 67(7):2110–2118

    PubMed  Google Scholar 

  21. Knutson B (2013) Interpretable whole-brain prediction analysis with GraphNet[J]. Neuroimage 72(2):304–321

    PubMed  Google Scholar 

  22. Lei Du, Heng, et al (2016) Structured sparse canonical correlation analysis for brain imaging genetics: an improved GraphNet method[J]. Bioinformatics 32(10):1544–1551

    Article  Google Scholar 

  23. Angulo S, García-Pérez I, Legido-Quigley C, Barbas C (2009) The autocorrelation matrix probing biochemical relationships after metabolic fingerprinting with CE. Electrophoresis 30(7):1221–1227. https://doi.org/10.1002/elps.200800554

    Article  CAS  PubMed  Google Scholar 

  24. Gorski J, Pfeuffer F, Klamroth K (2007) Biconvex sets and optimization with biconvex functions: a survey and extensions[J]. Math Methods Oper Res 66(3):373–407

    Article  Google Scholar 

  25. Xie S, Chen L, Zuo N et al (2016) DiffusionKit: A light one-stop solution for diffusion MRI data analysis[J]. J Neurosci Methods 273(273):107–119

    Article  Google Scholar 

  26. Tate, David. (2017). Voxel-Based Morphometry. https://doi.org/10.1007/978-3-319-56782-2_9076-2.

  27. Saykin AJ, Shen L, Foroud TM et al (2010) Alzheimer"s disease neuroimaging initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans[J]. Alzheimers & Dementia the Journal of the Alzheimers Association 6(3):265–273

    Article  CAS  Google Scholar 

  28. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: A tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet 81(3):559–575

    Article  CAS  Google Scholar 

  29. Bertram L, Mcqueen MB, Mullin K et al (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database[J]. Nat Genet 39(1):17–23

    Article  CAS  Google Scholar 

  30. Delaneau O, Zagury JF, Marchini J (2012) Improved whole-chromosome phasing for disease and population genetic studies[J]. Nat Methods 10(1):5–6

    Article  Google Scholar 

  31. Jack CRJ, Petersen RC, Xu YC et al (1999) Prediction of AD with MRI- Based Hippocampal Volume in Mild Cognitive Impairment[J]. Neurology 52(7):1397–1403

    Article  Google Scholar 

  32. Belmont DJW, Gibbs RA (2004) Genome-Wide Linkage Disequilibrium and Haplotype Maps[J]. Am J Pharmacogenomics 4(4):253–262

    Article  CAS  Google Scholar 

  33. Barrett JC, Fry B, Maller J et al (2005) Haploview: analysis and visualization of LD and haplotype maps[J]. Bioinformatics 21(2):263–265

    Article  CAS  Google Scholar 

  34. Kong V, Gabriel AD et al (2018) Early-in-life neuroanatomical and behavioural trajectories in a triple transgenic model of Alzheimer’s disease[J]. Brain Struct Funct 223(7):3365–3382

  35. Jaroudi W, Garami J et al (2017) Factors underlying cognitive decline in old age and Alzheimer’s disease: the role of the hippocampus[J]. Rev Neurosci 28(7):705–714

  36. Ertekin T, Acer N, Kseolu E et al (2016) Total intracranial and lateral ventricle volumes measurement in Alzheimer’s disease: a methodological study[J]. J Clin Neurosci 34:133–139

  37. Grubman A, Chew G, Ouyang JF et al (2019) A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat Neurosci 22:2087–2097. https://doi.org/10.1038/s41593-019-0539-4

    Article  CAS  PubMed  Google Scholar 

  38. Finger E, Zhang J, Dickerson B et al (2017) Disinhibition in Alzheimer’s disease is associated with reduced right frontal pole cortical thickness. J Alzheimer Dis 60(3):1161–1170

  39. Snowden SG, Ebshiana AA, Hye A et al (2019) Neurotransmitter imbalance in the brain and Alzheimer’s disease pathology[J]. J Alzheimer Dis 72:1–9

  40. Lin F, Ren P, Lo RY et al (2016) Insula and inferior frontal gyrus’ activities protect memory performance against Alzheimer’s disease pathology in old age[J]. J Alzheimer Dis 55(2):669–678

  41. Kucukkilic E, Brookes K, Barber I et al (2018) Complement receptor 1 gene (CR1) intragenic duplication and risk of Alzheimer’s disease[J]. Hum Genet 137(1):1–10

  42. Yonghong L, Andrew G, Charles R et al (2008) Evidence that common variation in NEDD9 is associated with susceptibility to late-onset Alzheimer’s and Parkinson’s disease[J]. Hum Mol Genet 17(5):759–767

  43. Beck TN, Nicolas E, Kopp MC et al (2014) Adaptors for disorders of the brain? The cancer signaling proteins NEDD9, CASS4, and PTK2B in Alzheimer’s disease[J]. Oncoscience 1(7):486–503

  44. (2019) Amyloidosis causes downregulation of SorLA, SorCS1 and SorCS3 expression in mice[J]. Biol Chem 400(9):1181-1189

Download references

Funding

This work was supported by the Natural Science Foundation of Shanghai (No. 18ZR1417200) and National Natural Science Foundation of China (No. 61803257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Kong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, K., Kong, W. & Wang, S. Associating brain imaging phenotypes and genetic in Alzheimer’s disease via JSCCA approach with autocorrelation constraints. Med Biol Eng Comput 60, 95–108 (2022). https://doi.org/10.1007/s11517-021-02439-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02439-2

Keywords

Navigation