Skip to main content
Log in

GLYFE: review and benchmark of personalized glucose predictive models in type 1 diabetes

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Due to the sensitive nature of diabetes-related data, preventing them from being easily shared between studies, and the wide discrepancies in their data processing pipeline, progress in the field of glucose prediction is hard to assess. To address this issue, we introduce GLYFE (GLYcemia Forecasting Evaluation), a benchmark of machine learning-based glucose predictive models. We present the accuracy and clinical acceptability of nine different models coming from the literature, from standard autoregressive to more complex neural network-based models. These results are obtained on two different datasets, namely UVA/Padova Type 1 Diabetes Metabolic Simulator (T1DMS) and Ohio Type-1 Diabetes Mellitus (OhioT1DM), featuring artificial and real type 1 diabetic patients respectively. By providing extensive details about the data flow as well as by providing the whole source code of the benchmarking process, we ensure the reproducibility of the results and the usability of the benchmark by the community. Those results serve as a basis of comparison for future studies. In a field where data are hard to obtain, and where the comparison of results from different studies is often irrelevant, GLYFE gives the opportunity of gathering researchers around a standardized common environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Euglycemia is the glycemia region between hypoglycemia and hyperglycemia, or between 70 and 180 mg/dL.

References

  1. World Health Organization et al (2016) Global report on diabetes. World Health Organization

  2. Ólafsdóttir AF, Attvall S, Sandgren U, Dahlqvist S, Pivodic A, Skrtic S, Theodorsson E, Lind M (2017) A clinical trial of the accuracy and treatment experience of the flash glucose monitor freestyle libre in adults with type 1 diabetes. Diabetes Technol Therapeut 19(3):164–172

    Article  Google Scholar 

  3. Rose K, Koenig M, Wiesbauer F (2013) Evaluating success for behavioral change in diabetes via mhealth and gamification: Mysugr’s keys to retention and patient engagement. Diabetes Technol Therapeut 15:A114

    Google Scholar 

  4. Bequette BW (2012) Challenges and recent progress in the development of a closed-loop artificial pancreas. Ann Rev Control 36(2):255–266

    Article  Google Scholar 

  5. Man CD, Micheletto F, Lv D, Breton M, Kovatchev B, Cobelli C (2014) The uva/padova type 1 diabetes simulator: new features. J Diabetes Sci Technol 8(1):26–34

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marling C, Bunescu RC (2018) The ohiot1dm dataset for blood glucose level prediction. In: KHD@ IJCAI, pp 60–63

  7. Oviedo S, Vehí J, Calm R, Armengol J (2017) A review of personalized blood glucose prediction strategies for t1dm patients. Int J Numer Methods Biomed Eng 33(6):e2833

    Article  Google Scholar 

  8. Huzooree G, Khedo KK, Joonas N (2017) Glucose prediction data analytics for diabetic patients monitoring, pp 188–195

  9. Woldaregay AZ, Årsand E, Walderhaug S, Albers D, Mamykina L, Botsis T, Hartvigsen G (2019) Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Artif Intell Med 98:109–134

    Article  PubMed  Google Scholar 

  10. Kovatchev BP, Breton M, Dalla Man C, Cobelli C (2009) In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J Diabetes Sci Technol

  11. Ruedy KJ, Beck RW, Xing D, Kollman C (2007) Diabetes research in children network: availability of protocol data sets. J Diabetes Sci Technol 1(5):738–745

    Article  PubMed  PubMed Central  Google Scholar 

  12. J. C. for Health Research. Study information. [Online]. Available: http://direcnet.jaeb.org/Studies.aspx

  13. Bazaev NA, Pozhar KV (2017) Blood glucose predir ”artificial pancreas” system. In: Gluconeogenesis InTech

  14. Rudenko P, Bazaev N, Pozhar K, Litinskaia E, Grinvald V, Chekasin A (2018) Getting daily blood glucose tracks using clinical protocols of the direcnet database. Biomed Eng 51(5):346–349

    Article  Google Scholar 

  15. Balakrishnan NP, Samavedham L, Rangaiah GP (2014) Personalized mechanistic models for exercise, meal and insulin interventions in children and adolescents with type 1 diabetes. J Theoret Biol 357:62–73

    Article  Google Scholar 

  16. Mhaskar HN, Pereverzyev SV, van der Walt MD (2017) A deep learning approach to diabetic blood glucose prediction. Front Appl Math Stat 3:14

    Article  Google Scholar 

  17. Jones TW, Davis EA (2003) Hypoglycemia in children with type 1 diabetes: current issues and controversies. Pediat Diabetes 4(3):143–150

    Article  Google Scholar 

  18. Kahn M Uci machine learning repository: Diabetes data set. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/diabetes

  19. Khan T, Masud M, Mamun KA (2017) Methods to predict blood glucose level for type 2 diabetes patients. In: Humanitarian technology conference (r10-HTC), 2017, IEEE Region 10. IEEE, pp 392–395

  20. Aibinu A, Salami M, Shafie A (2010) Blood glucose level prediction using intelligent based modeling techniques

  21. Tomczak JM (2016) Gaussian process regression with categorical inputs for predicting the blood glucose level, pp 98–108

  22. Lehmann ED, Deutsch T Aida freeware diabetes software simulator program of glucose - insulin action. [Online]. Available: http://www.2aida.org/online/

  23. Lehmann E, Deutsch T, Carson E, Sönksen P (1994) Aida: an interactive diabetes advisor. Comput Methods Prog Biomed 41(3-4):183–203

    Article  CAS  Google Scholar 

  24. Hidalgo JI, Colmenar JM, Risco-Martin JL, Cuesta-Infante A, Maqueda E, Botella M, Rubio JA (2014) Modeling glycemia in humans by means of grammatical evolution. Appl Soft Comput 20:40–53

    Article  Google Scholar 

  25. Reymann MP, Dorschky E, Groh BH, Martindale C, Blank P, Eskofier BM (2016) Blood glucose level prediction based on support vector regression using mobile platforms. In: 2016 IEEE 38th annual international conference of the engineering in medicine and biology society (EMBC). IEEE, pp 2990–2993

  26. Assadi K, Hamdi T, Fnaiech F, Ginoux JM, Moreau E (2017) Estimation of blood glucose levels techniques. In: 2017 international conference on smart, monitored and controlled cities (SM2c). IEEE, pp 75–80

  27. Bamgbose SO, Li X, Qian L (2017) Closed loop control of blood glucose level with neural network predictor for diabetic patients. In: IEEE 19th international conference on e-Health networking, applications and services (Healthcom), 2017. IEEE, pp 1–6

  28. Mirshekarian S, Shen H, Bunescu R, Marling C (2019) Lstms and neural attention models for blood glucose prediction: Comparative experiments on real and synthetic data. In: 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 706–712

  29. Wilinska ME, Chassin LJ, Acerini CL, Allen JM, Dunger DB, Hovorka R (2010) Simulation environment to evaluate closed-loop insulin delivery systems in type 1 diabetes. J Diabetes Sci Technol 4(1):132–144

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi-Benedetti M, Federici MO, Pieber TR, Schaller HC, Schaupp L, Vering T et al (2004) Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 25(4):905

    Article  PubMed  Google Scholar 

  31. Laguna AJ, Rossetti P, Ampudia-Blasco FJ, Vehí J, Bondia J (2014) Experimental blood glucose interval identification of patients with type 1 diabetes. J Process Control 24(1):171–181

    Article  CAS  Google Scholar 

  32. Szalay P, Benyó Z, Kovács L (2016) Long-term prediction for t1dm model during state-feedback control. In: 2016 12th IEEE international conference on control and automation (ICCA). IEEE, pp 311–316

  33. Boiroux D, Duun-Henriksen AK, Schmidt S, Nørgaard K, Poulsen NK, Madsen H, Jørgensen JB (2017) Adaptive control in an artificial pancreas for people with type 1 diabetes. Control Eng Pract 58:332–342

    Article  Google Scholar 

  34. Visentin R, Campos-Náñez E, Schiavon M, Lv D, Vettoretti M, Breton M, Kovatchev BP, Dalla Man C, Cobelli C (2018) The uva/padova type 1 diabetes simulator goes from single meal to single day. J Diabetes Sci Technol 12(2):273–281

    Article  PubMed  PubMed Central  Google Scholar 

  35. Laguna Sanz AJ, Doyle III FJ, Dassau E (2017) An enhanced model predictive control for the artificial pancreas using a confidence index based on residual analysis of past predictions. J Diabetes Sci Technol 11(3):537–544

    Article  PubMed  Google Scholar 

  36. Turksoy K, Samadi S, Feng J, Littlejohn E, Quinn L, Cinar A (2016) Meal detection in patients with type 1 diabetes: a new module for the multivariable adaptive artificial pancreas control system. IEEE J Biomed Health Inform 20(1):47–54

    Article  PubMed  Google Scholar 

  37. Feng J, Turksoy K, Cinar A (2016) Performance assessment of model-based artificial pancreas control systems. In: Prediction methods for blood glucose concentration. Springer, pp 243–265

  38. Li C, Zhao C, Zhao H, Yu C (2017) Blood glucose control based on rapid model identification with particle swarm optimization method. In: 29th Chinese control and decision conference (CCDC), 2017. IEEE, pp 947–952

  39. Contreras I, Oviedo S, Vettoretti M, Visentin R, Vehí J (2017) Personalized blood glucose prediction: A hybrid approach using grammatical evolution and physiological models. PloS One 12 (11):e0187754

    Article  PubMed  PubMed Central  Google Scholar 

  40. Contreras I, Vehí J, Visentin R, Vettoretti M (2017) A hybrid clustering prediction for type 1 diabetes aid: towards decision support systems based upon scenario profile analysis. In: Proceedings of the second IEEE/ACM international conference on connected health: applications, systems and engineering technologies. IEEE Press, pp 64–69

  41. Zhao H, Zhao C, Yu C, Dassau E (2018) Multiple order model migration and optimal model selection for online glucose prediction in type 1 diabetes. AIChE J 64(3):822–834

    Article  CAS  Google Scholar 

  42. Yu X, Turksoy K, Rashid M, Feng J, Hobbs N, Hajizadeh I, Samadi S, Sevil M, Lazaro C, Maloney Z et al (2018) Model-fusion-based online glucose concentration predictions in people with type 1 diabetes. Control Eng Pract 71:129–141

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zecchin C, Facchinetti A, Sparacino G, De Nicolao G, Cobelli C (2012) Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration. IEEE Trans Biomed Eng 59(6):1550–1560

    Article  PubMed  Google Scholar 

  44. Sun X, Yu X, Liu J, Wang H (2017) Glucose prediction for type 1 diabetes using klms algorithm. In: 2017 36th Chines control conference (CCC). IEEE, pp 1124–1128

  45. Sun Q, Jankovic MV, Bally L, Mougiakakou SG (2018) Predicting blood glucose with an lstm and bi-lstm based deep neural network. In: 2018 14th symposium on neural networks and applications (NEUREL), pp 1–5

  46. Vehí J, Contreras I, Oviedo S, Biagi L, Bertachi A (2019) Prediction and prevention of hypoglycaemic events in type-1 diabetic patients using machine learning. Health Inf J: 1460458219850682

  47. Li K, Liu C, Zhu T, Herrero P, Georgiou P (2019) Glunet: A deep learning framework for accurate glucose forecasting. IEEE J Biomed Health Inf

  48. Zhu T, Li K, Herrero P, Chen J, Georgiou P (2018) A deep learning algorithm for personalized blood glucose prediction. In: KHD@ IJCAI, pp 64–78

  49. Bertachi A, Biagi L, Contreras I, Luo N, Vehí J (2018) Prediction of blood glucose levels and nocturnal hypoglycemia using physiological models and artificial neural networks. In: KHD@ IJCAI, pp 85–90

  50. Contreras I, Bertachi A, Biagi L, Vehí J, Oviedo S (2018) Using grammatical evolution to generate short-term blood glucose prediction models. In: KHD@ IJCAI, pp 91–96

  51. Midroni C, Leimbigler PJ, Baruah G, Kolla M, Whitehead AJ, Fossat Y (2018) Predicting glycemia in type 1 diabetes patients:, experiments with xgboost. Heart 60(90):120

    Google Scholar 

  52. Jeon J, Leimbigler PJ, Baruah G, Li MH, Fossat Y, Whitehead AJ (2019) Predicting glycaemia in type 1 diabetes patients: Experiments in feature engineering and data imputation. J Healthcare Inf Res: 1–20

  53. Mayo M, Chepulis L, Paul RG (2019) Glycemic-aware metrics and oversampling techniques for predicting blood glucose levels using machine learning. PloS One 12:14

    Google Scholar 

  54. De Bois M, El Yacoubi MA, Ammi M (2019) Prediction-coherent lstm-based recurrent neural network for safer glucose predictions in diabetic people. In: International conference on neural information processing. Springer, pp 510–521

  55. Martinsson J, Schliep A, Eliasson B, Mogren O (2019) Blood glucose prediction with variance estimation using recurrent neural networks. J Healthcare Inf Res 1–18

  56. Akbari M, Chunara R (2019) Using contextual information to improve blood glucose prediction. arXiv:1909.01735

  57. Dalla Man C, Rizza RA, Cobelli C (2007) Meal simulation model of the glucose-insulin system. IEEE Trans Biomed Eng 54(10):1740–1749

    Article  PubMed  Google Scholar 

  58. Bergman RN, Ider YZ, Bowden CR, Cobelli C (1979) Quantitative estimation of insulin sensitivity. Amer J Physiol Endocrinol Metabol 236(6):E667

    Article  CAS  Google Scholar 

  59. Bergman RN (2005) Minimal model: perspective from 2005. Hormone Res Paediat 164(Suppl. 3):8–15

    Article  Google Scholar 

  60. Calm R, García-Jaramillo M, Bondia J, Sainz M, Vehí J (2011) Comparison of interval and monte carlo simulation for the prediction of postprandial glucose under uncertainty in type 1 diabetes mellitus. Comput Methods Prog Biomed 104(3):325–332

    Article  CAS  Google Scholar 

  61. Duun-Henriksen AK, Schmidt S, Røge RM, Møller JB, Nørgaard K, Jørgensen JB, Madsen H (2013) Model identification using stochastic differential equation grey-box models in diabetes. J Diabetes Sci Technol 7(2):431–440

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sparacino G, Zanderigo F, Corazza S, Maran A, Facchinetti A, Cobelli C (2007) Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans Biomed Eng 54(5):931–937

    Article  PubMed  Google Scholar 

  63. Eren-Oruklu M, Cinar A, Quinn L, Smith D (2009) Estimation of future glucose concentrations with subject-specific recursive linear models. Diabetes Technol Therap 11(4):243–253

    Article  CAS  Google Scholar 

  64. Eren-Oruklu M, Cinar A, Rollins DK, Quinn L (2012) Adaptive system identification for estimating future glucose concentrations and hypoglycemia alarms. Automatica 48(8):1892–1897

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yang J, Li L, Shi Y, Xie X (2018) An arima model with adaptive orders for predicting blood glucose concentrations and hypoglycemia. IEEE J Biomed Health Inf

  66. Daskalaki E, Nørgaard K, Züger T, Prountzou A, Diem P, Mougiakakou S (2013) An early warning system for hypoglycemic/hyperglycemic events based on fusion of adaptive prediction models. J Diabetes Sci Technol 7(3):689–698

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jankovic MV, Mosimann S, Bally L, Stettler C, Mougiakakou S (2016) Deep prediction model:, The case of online adaptive prediction of subcutaneous glucose 1–5

  68. Wang Q, Molenaar P, Harsh S, Freeman K, Xie J, Gold C, Rovine M, Ulbrecht J (2014) Personalized state-space modeling of glucose dynamics for type 1 diabetes using continuously monitored glucose, insulin dose, and meal intake: an extended kalman filter approach. J Diabetes Sci Technol 8 (2):331–345

    Article  PubMed  PubMed Central  Google Scholar 

  69. Macas M, Lhotska L, Stechova K, Pithova P, Saiti K (2017) Particle swarm optimization based adaptable predictor of glycemia values. In: 2017 3rd IEEE international conference on cybernetics (CYBCONF). IEEE, pp 1–6

  70. Novara C, Pour NM, Vincent T, Grassi G (2016) A nonlinear blind identification approach to modeling of diabetic patients. IEEE Trans Control Syst Technol 24(3):1092–1100

    Article  Google Scholar 

  71. Zarkogianni K, Mitsis K, Litsa E, Arredondo M-T, Fico G, Fioravanti A, Nikita KS (2015) Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring. Med Biol Eng Comput 53(12):1333–1343

    Article  CAS  PubMed  Google Scholar 

  72. Georga EI, Protopappas VC, Ardigò D, Polyzos D, Fotiadis DI (2013) A glucose model based on support vector regression for the prediction of hypoglycemic events under free-living conditions. Diabetes Technol Therap 15(8):634–643

    Article  CAS  Google Scholar 

  73. Ali JB, Hamdi T, Fnaiech N, Di Costanzo V, Fnaiech F, Ginoux J-M (2018) Continuous blood glucose level prediction of type 1 diabetes based on artificial neural network. Biocybern Biomed Eng 38(4):828–840

    Article  Google Scholar 

  74. Sandham W, Nikoletou D, Hamilton D, Paterson K, Japp A, MacGregor C (1998) Blood glucose prediction for diabetes therapy using a recurrent artificial neural network. In: 9th European signal processing conference (EUSIPCO 1998). IEEE, pp 1–4

  75. Fiorini S, Martini C, Malpassi D, Cordera R, Maggi D, Verri A, Barla A (2017) Data-driven strategies for robust forecast of continuous glucose monitoring time-series. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 1680–1683

  76. Mirshekarian S, Bunescu R, Marling C, Schwartz F (2017) Using lstms to learn physiological models of blood glucose behavior. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 2887–2891

  77. Gers FA, Schmidhuber J, Cummins F (1999) Learning to forget: Continual prediction with lstm

  78. Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: IEEE International Joint Conference on Neural Networks, 2004. Proceedings 2004, vol 2. IEEE, pp 985–990

  79. Pao Y-H, Park G-H, Sobajic DJ (1994) Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 6(2):163–180

    Article  Google Scholar 

  80. Georga EI, Protopappas VC, Polyzos D, Fotiadis DI (2015) Online prediction of glucose concentration in type 1 diabetes using extreme learning machines. In: 2015 37th annual international conference of the engineering in medicine and biology society (EMBC). IEEE, pp 3262–3265

  81. Ling SH, San PP, Nguyen HT (2016) Non-invasive hypoglycemia monitoring system using extreme learning machine for type 1 diabetes. ISA Trans 64:440–446

    Article  PubMed  Google Scholar 

  82. Zecchin C, Facchinetti A, Sparacino G, Cobelli C (2014) Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information. Comput Methods Prog Biomed 113(1):144–152

    Article  CAS  Google Scholar 

  83. Li K, Daniels J, Liu C, Herrero-Vinas P, Georgiou P (2019) Convolutional recurrent neural networks for glucose prediction. IEEE J Biomed Health Inf

  84. Zhu T, Li K, Chen J, Herrero P, Georgiou P (2020) Dilated recurrent neural networks for glucose forecasting in type 1 diabetes. J Healthcare Inf Res 4(3):308–324

    Article  Google Scholar 

  85. De Bois M, El Yacoubi MA, Ammi M (2021) Adversarial multi-source transfer learning in healthcare: Application to glucose prediction for diabetic people. Comput Methods Prog Biomed 199:105874

    Article  Google Scholar 

  86. Li N, Tuo J, Wang Y (2018) Chaotic time series analysis approach for prediction blood glucose concentration based on echo state networks. In: 2018 Chinese control and decision conference (CCDC). IEEE, pp 2017–2022

  87. Hofmann T, Schölkopf B, Smola AJ (2008) Kernel methods in machine learning. Ann Stat 1171–1220

  88. De Paula M, Avila LO, Martinez EC (2015) Controlling blood glucose variability under uncertainty using reinforcement learning and gaussian processes. Appl Soft Comput 35:310–332

    Article  Google Scholar 

  89. Bunescu R, Struble N, Marling C, Shubrook J, Schwartz F (2013) Blood glucose level prediction using physiological models and support vector regression. In: 12th international conference on machine learning and applications (ICMLA), 2013, vol 1. IEEE, pp 135–140

  90. Georga EI, Protopappas VC, Ardigò D, Marina M, Zavaroni I, Polyzos D, Fotiadis DI (2013) Multivariate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression. IEEE J Biomed Health Inf 17(1):71–81

    Article  CAS  Google Scholar 

  91. Hamdi T, Ali JB, Di Costanzo V, Fnaiech F, Moreau E, Ginoux J-M (2018) Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm. Biocybern Biomed Eng 38(2):362–372

    Article  Google Scholar 

  92. Naumova V, Nita L, Poulsen JU, Pereverzyev SV (2016) Meta-learning based blood glucose predictor for diabetic smartphone app. In: Prediction methods for blood glucose concentration. Springer, pp 93–105

  93. Yu X, Rashid M, Feng J, Hobbs N, Hajizadeh I, Samadi S, Sevil M, Lazaro C, Maloney Z, Littlejohn E et al (2018) Online glucose prediction using computationally efficient sparse kernel filtering algorithms in type-1 diabetes. IEEE Trans Control Syst Technol 99:1–13

    Google Scholar 

  94. Georga EI, Principe JC, Polyzos D, Fotiadis DI (2016) Non-linear dynamic modeling of glucose in type 1 diabetes with kernel adaptive filters. In: 2016 IEEE 38th annual international conference of the engineering in medicine and biology society (EMBC). IEEE, pp 5897–5900

  95. Georga EI, Príncipe JC, Rizos EC, Fotiadis DI (2017) Kernel-based adaptive learning improves accuracy of glucose predictive modelling in type 1 diabetes:, A proof-of-concept study. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 2765–2768

  96. Georga EI, Príncipe JC, Fotiadis DI (2019) Short-term prediction of glucose in type 1 diabetes using kernel adaptive filters. Med Biol Eng Comput 57(1):27–46

    Article  PubMed  Google Scholar 

  97. Zecchin C, Facchinetti A, Sparacino G, Dalla Man C, Manohar C, Levine JA, Basu A, Kudva YC, Cobelli C (2013) Physical activity measured by physical activity monitoring system correlates with glucose trends reconstructed from continuous glucose monitoring. Diabetes Technol Therap 15(10):836–844

    Article  CAS  Google Scholar 

  98. Mougiakakou SG, Prountzou A, Iliopoulou D, Nikita KS, Vazeou A, Bartsocas CS (2006) Neural network based glucose-insulin metabolism models for children with type 1 diabetes. In: 28th annual international conference of the engineering in medicine and biology society, 2006. EMBS’06. IEEE, pp 3545–3548

  99. Daskalaki E, Prountzou A, Diem P, Mougiakakou SG (2012) Real-time adaptive models for the personalized prediction of glycemic profile in type 1 diabetes patients. Diabetes Technol Therap 14 (2):168–174

    Article  Google Scholar 

  100. Zarkogianni K, Vazeou A, Mougiakakou SG, Prountzou A, Nikita KS (2011) An insulin infusion advisory system based on autotuning nonlinear model-predictive control. IEEE Trans Biomed Eng 58 (9):2467–2477

    Article  PubMed  Google Scholar 

  101. Sparacino G, Zanderigo F, Maran A, Cobelli C (2006) Continuous glucose monitoring and hypo/hyperglycaemia prediction. Diabetes Res Clin Pract 74:S160–S163

    Article  CAS  Google Scholar 

  102. De Bois M, El Yacoubi MA, Ammi M Study of short-term personalized glucose predictive models on type-1 diabetic children, accepted at IJCNN 2019, date to be determined

  103. Klambauer G, Unterthiner T, Mayr A, Hochreiter S (2017) Self-normalizing neural networks. In: Advances in neural information processing systems, pp 971–980

  104. Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv:1412.6980

  105. Gani A, Gribok AV, Rajaraman S, Ward WK, Reifman J (2009) Predicting subcutaneous glucose concentration in humans: data-driven glucose modeling. IEEE Trans Biomed Eng 56(2):246

    Article  PubMed  Google Scholar 

  106. Facchinetti A, Sparacino G, Trifoglio E, Cobelli C (2011) A new index to optimally design and compare continuous glucose monitoring glucose prediction algorithms. Diabetes Technol Therap 13(2):111–119

    Article  Google Scholar 

  107. Kovatchev BP, Gonder-Frederick LA, Cox DJ, Clarke WL (2004) Evaluating the accuracy of continuous glucose-monitoring sensors: continuous glucose–error grid analysis illustrated by therasense freestyle navigator data. Diabetes Care 27(8):1922–1928

    Article  CAS  PubMed  Google Scholar 

  108. Clarke WL (2005) The original clarke error grid analysis (ega). Diabetes Technol Therap 7 (5):776–779

    Article  Google Scholar 

  109. Parkes JL, Slatin SL, Pardo S, Ginsberg BH (2000) A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care 23(8):1143–1148

    Article  CAS  PubMed  Google Scholar 

  110. De Bois M Glyfe 2019, doi:https://doi.org/10.5281/zenodo.3497408. [Online]. Available: https://github.com/dotXem/GLYFE

  111. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: Machine learning in python. J Mach Learn Res 12(Oct):2825–2830

    Google Scholar 

  112. McKinney W, Perktold J, Seabold S (2011) Time series analysis in python with statsmodels. Jarrodmillman Com 96–102

  113. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch

  114. Gers FA, Eck D, Schmidhuber J (2002) Applying lstm to time series predictable through time-window approaches. In: Neural nets WIRN Vietri-01. Springer, pp 193–200

Download references

Funding

This work is supported by the “IDI 2017” project funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime De Bois.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Bois, M., Yacoubi, M.A.E. & Ammi, M. GLYFE: review and benchmark of personalized glucose predictive models in type 1 diabetes. Med Biol Eng Comput 60, 1–17 (2022). https://doi.org/10.1007/s11517-021-02437-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02437-4

Keywords

Navigation