Skip to main content
Log in

Characterization of the cylindrical electrospun nanofibrous polysulfone membrane for hemodialysis with modelling approach

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Electrospun nanofibrous membrane (ENM) is a membrane fabricated using electrospinning technique which has considerable characteristics such as high porosity, nanometer pore size, and simple process. Although ENMs are being evaluated in various medical applications, the effectiveness for hemodialysis (HD) has not been evaluated carefully. Thus, in this study, the cylindrical electrospun nanofibrous polysulfone (CENP) membrane was fabricated and its performance in the dialysis adequacy in HD patients was evaluated.

The CENP membrane was fabricated in a tabular shape. The physical characteristics of the membrane are examined using scanning electron microscope (SEM) images and the permporometry technique. Then, its efficiency in urea and creatinine removal from the blood serum of 21 HD patients was evaluated at a low blood flow rate (BFR) of 200 ml min-1 and dialysate fluid rate (DFR) of 300 ml min-1. Afterwards, the results were modeled and optimized using artificial neural network (ANN) and genetic algorithm (GA), respectively. Finally, sensitive analysis was performed via Spearman’s rank correlation coefficient. The highest dialysis adequacy was observed in membranes with an inner diameter of 3 mm. The CENP membrane belongs to the super high-flux membrane and it could be replaced with existing commercial hollow fiber membranes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Storr M, Ward RA (2018) Membrane innovation: closer to native kidneys. Nephrol Dial Transplant 33:22–27. https://doi.org/10.1093/ndt/gfy228

    Article  CAS  Google Scholar 

  2. Lim JH, Park Y, Yook JM et al (2020) Randomized controlled trial of medium cut-off versus high-flux dialyzers on quality of life outcomes in maintenance hemodialysis patients. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-64622-z

    Article  CAS  Google Scholar 

  3. Ma L, Zhao S (2017) Risk factors for mortality in patients undergoing hemodialysis: a systematic review and meta-analysis. Int J Cardiol 238:151–158. https://doi.org/10.1016/j.ijcard.2017.02.095

    Article  PubMed  Google Scholar 

  4. Maduell F, Broseta JJ, Rodas L et al (2020) Comparison of solute removal properties between high-efficient dialysis modalities in low blood flow rate. Ther Apher Dial 24:387–392. https://doi.org/10.1111/1744-9987.13440

    Article  CAS  PubMed  Google Scholar 

  5. Daly MA, Vale L, Campbell M et al (2005) Cellulose, modified cellulose and synthetic membranes in the haemodialysis of patients with end-stage renal disease (Review). https://doi.org/10.1002/14651858.CD003234

  6. Eswari JS, Naik S (2020) A critical analysis on various technologies and functionalized materials for manufacturing dialysis membranes. Mater Sci Energy Technol 3:116–126. https://doi.org/10.1016/j.mset.2019.10.011

    Article  CAS  Google Scholar 

  7. Cortez Tornello PR, Caracciolo PC, Igartúa Roselló JI, Abraham GA (2018) Electrospun scaffolds with enlarged pore size: porosimetry analysis. Mater Lett 227:191–193. https://doi.org/10.1016/j.matlet.2018.05.072

    Article  CAS  Google Scholar 

  8. Ronco C, Neri M, Lorenzin A et al (2017) Multidimensional classification of dialysis membranes. Contrib Nephrol 191:115–126. https://doi.org/10.1159/000479260

    Article  CAS  PubMed  Google Scholar 

  9. Hoque ME, Nuge T, Yeow TK, Nordin N (2019) Electrospun matrices from natural polymers for skin regeneration. In: Nanostructured Polymer Composites for Biomedical Applications. Elsevier, pp 87–104

  10. Namekawa K, Tokoro Schreiber M, Aoyagi T, Ebara M (2014) Fabrication of zeolite–polymer composite nanofibers for removal of uremic toxins from kidney failure patients. Biomater Sci 2:674. https://doi.org/10.1039/c3bm60263j

    Article  CAS  PubMed  Google Scholar 

  11. Lu L, Samarasekera C, Yeow JTW (2015) Creatinine adsorption capacity of electrospun polyacrylonitrile (PAN)-zeolite nanofiber membranes for potential artificial kidney applications. J Appl Polym Sci 132:n/a-n/a. https://doi.org/10.1002/app.42418

  12. Yen SC, Liu ZW, Juang RS et al (2019) Carbon nanotube/conducting polymer hybrid nanofibers as novel organic bioelectronic interfaces for efficient removal of protein-bound uremic toxins. ACS Appl Mater Interfaces 11:43843–43856. https://doi.org/10.1021/acsami.9b14351

    Article  CAS  PubMed  Google Scholar 

  13. Bahramimehr F, Esmaeili A (2019) Producing hybrid nanofiber-based on /PAN/Fe3 O4 /zeolite/nettle plant extract/urease and a deformed coaxial natural polymer to reduce toxicity materials in the blood of dialysis patients. J Biomed Mater Res A jbm.a.36689. https://doi.org/10.1002/jbm.a.36689

  14. Maurmann N, Sperling LE, Pranke P (2018) Electrospun and electrosprayed scaffolds for tissue engineering. Advances in Experimental Medicine and Biology. Springer, New York LLC, pp 79–100

    Google Scholar 

  15. Liu M, Zhang Y, Sun S et al (2019) Recent advances in electrospun for drug delivery purpose. J. Drug Target. 27:270–282

    Article  CAS  Google Scholar 

  16. Park JA, Kim SB (2017) Antimicrobial filtration with electrospun poly(vinyl alcohol) nanofibers containing benzyl triethylammonium chloride: immersion, leaching, toxicity, and filtration tests. Chemosphere 167:469–477. https://doi.org/10.1016/j.chemosphere.2016.10.030

    Article  CAS  PubMed  Google Scholar 

  17. Chen H, Huang M, Liu Y et al (2020) Functionalized electrospun nanofiber membranes for water treatment: a review. Sci Total Environ 739

  18. Koh E, Lee YT (2020) Development of an embossed nanofiber hemodialysis membrane for improving capacity and efficiency via 3D printing and electrospinning technology. Sep Purif Technol 241:116657. https://doi.org/10.1016/j.seppur.2020.116657

    Article  CAS  Google Scholar 

  19. Mohammadi F, Valipouri A, Semnani D, Alsahebfosoul F (2018) Nanofibrous tubular membrane for blood hemodialysis. Appl Biochem Biotechnol 186:443–458. https://doi.org/10.1007/s12010-018-2744-0

    Article  CAS  PubMed  Google Scholar 

  20. Rianjanu A, Kusumaatmaja A, Suyono EA, Triyana K (2018) Solvent vapor treatment improves mechanical strength of electrospun polyvinyl alcohol nanofibers. Heliyon 4:e00592. https://doi.org/10.1016/j.heliyon.2018.e00592

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qi L, Guo C-Y, Huang Fu M-G et al (2019) Enhancement of solvent resistance of polyimide electrospun mat via the UV-assisted electrospinning and photosensitive varnish. Polymers (Basel) 11:2055. https://doi.org/10.3390/polym11122055

    Article  CAS  PubMed Central  Google Scholar 

  22. Perez-Garcia R, Jaldo M, Alcázar R et al (2019) Unlike Kt, high Kt/V is associated with greater mortality: the importance of low V. Nefrologia 39:58–66. https://doi.org/10.1016/j.nefroe.2018.04.011

    Article  PubMed  Google Scholar 

  23. García-Alba J, Bárcena JF, Ugarteburu C, García A (2019) Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water Res 150:283–295. https://doi.org/10.1016/J.WATRES.2018.11.063

    Article  PubMed  Google Scholar 

  24. Ghezelbash A, Keynia F (2014) Design and implementation of artificial neural network system for stock exchange prediction

  25. Long J, Xueyuan K, Haihong H et al (2004) Study on the overfitting of the artificial neural network forecasting model *. Acta Meteorol Sin 19:216–225

    Google Scholar 

  26. Mohammadi N, Mirabedini SJ (2018) Comparison of particle swarm optimization and backpropagation algorithms for training feedforward neural network. J Math Comput Sci 12:113–123. https://doi.org/10.22436/jmcs.012.02.03

    Article  Google Scholar 

  27. Deng Y, Xiao H, Xu J, Wang H (2019) Prediction model of PSO-BP neural network on coliform amount in special food. Saudi J Biol Sci 26:1154–1160. https://doi.org/10.1016/j.sjbs.2019.06.016

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jahangir MH, Mousavi Reineh SM, Abolghasemi M (2019) Spatial predication of flood zonation mapping in Kan River Basin, Iran, using artificial neural network algorithm. Weather Clim Extrem 25:100215. https://doi.org/10.1016/J.WACE.2019.100215

    Article  Google Scholar 

  29. Fan M, Hu J, Cao R et al (2018) A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence. Chemosphere 200:330–343. https://doi.org/10.1016/J.CHEMOSPHERE.2018.02.111

  30. Lu H, Kim E, Gutierrez M (2019) Monte Carlo simulation (MCS)-based uncertainty analysis of rock mass quality Q in underground construction. Tunn Undergr Sp Technol 94. https://doi.org/10.1016/j.tust.2019.103089

  31. Lee GH, Song JC, Yoon KB (2010) Controlled wall thickness and porosity of polymeric hollow nanofibers by coaxial electrospinning. Macromol Res 18:571–576. https://doi.org/10.1007/s13233-010-0607-9

    Article  CAS  Google Scholar 

  32. Sreedhara SS, Tata NR (2013) A novel method for measurement of porosity in nanofiber mat using pycnometer in filtration. J Eng Fiber Fabr 8:132–137. https://doi.org/10.1177/155892501300800408

    Article  Google Scholar 

  33. Najafi M, Frey MW (2020) Electrospun nanofibers for chemical separation. Nanomaterials 10. https://doi.org/10.3390/nano10050982

  34. Haroon S, Davenport A (2018) Choosing a dialyzer: What clinicians need to know. Hemodial Int 22:S65–S74. https://doi.org/10.1111/hdi.12702

    Article  PubMed  Google Scholar 

  35. Ren J, Li Z, Wong FS (2006) A new method for the prediction of pore size distribution and MWCO of ultrafiltration membranes. J Memb Sci 279:558–569. https://doi.org/10.1016/j.memsci.2005.12.052

    Article  CAS  Google Scholar 

  36. Tojo A, Kinugasa S (2012) Mechanisms of glomerular albumin filtration and tubular reabsorption. Int J Nephrol 2012:481520. https://doi.org/10.1155/2012/481520

  37. Magee CC, Tucker JK, Singh AK (2016) Core concepts in dialysis and continuous therapies. In: Core Concepts Dial Contin Ther. https://books.google.com.ua/books?id=ygBkDAAAQBAJ&pg=PA258&lpg=PA258&dq=pore+size+distribution+MWCO+MWRO&source=bl&ots=9O0licWce_&sig=ACfU3U1MCEZN7VCnV5zTk1a9uP50r5XkOg&hl=en&sa=X&ved=2ahUKEwiOgvd0LPrAhWHGewKHdxZDGw4ChDoATAEegQIARAB#v=onepage&q=poresize. Accessed 25 Aug 2020

  38. Boschetti-De-Fierro A, Voigt M, Storr M, Krause B (2013) Extended characterization of a new class of membranes for blood purification: the high cut-off membranes. https://doi.org/10.5301/ijao.5000220

  39. Zweigart C, Boschetti-de-Fierro A, Hulko M et al (2017) Medium cut-off membranes - closer to the natural kidney removal function. Int. J. Artif. Organs 40:328–334

    Article  Google Scholar 

  40. Leypoldt JK, Cheung AK, Carroll CE et al (1999) Effect of dialysis membranes and middle molecule removal on chronic hemodialysis patient survival. Am J Kidney Dis 33:349–355. https://doi.org/10.1016/S0272-6386(99)70311-2

    Article  CAS  PubMed  Google Scholar 

  41. Ma K, Khan MA, Hussain A (2019) Haemodialysis membranes: a review. J Membr Sci Technol 9:205

    Google Scholar 

  42. Leypoldt JK, Cheung AK, Agodoa LY et al (1997) Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. Kidney Int 51:2013–2017. https://doi.org/10.1038/ki.1997.274

    Article  CAS  PubMed  Google Scholar 

  43. Ahrenholz P, Winkler RE, Zendeh-Zartochti D (2015) The role of the dialysate flow rate in haemodialysis. In: Updates in Hemodialysis. InTech

  44. Vilar E, Fry AC, Wellsted D et al (2009) Long-term outcomes in online hemodiafiltration and high-flux hemodialysis: a comparative analysis. Clin J Am Soc Nephrol 4:1944–1953. https://doi.org/10.2215/CJN.05560809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moist LM, Hemmelgarn BR, Lok CE (2006) Relationship between blood flow in central venous catheters and hemodialysis adequacy. Clin J Am Soc Nephrol 1:965–971. https://doi.org/10.2215/CJN.01090306

    Article  PubMed  Google Scholar 

  46. Kim THY, Kim SH, Kim THY et al (2019) Removal of large middle molecules via haemodialysis with medium cut-off membranes at lower blood flow rates: an observational prospective study. BMC Nephrol 21:1–9. https://doi.org/10.1186/s12882-019-1669-3

    Article  CAS  Google Scholar 

  47. Himmelfarb J, Ratner B (2020) Wearable artificial kidney: problems, progress and prospects. Nat Rev Nephrol 1–2

  48. Bahrami M, Akbari M, Bagherzadeh SA et al (2019) Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid. Phys A Stat Mech its Appl 519:159–168. https://doi.org/10.1016/j.physa.2018.12.031

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article is the result of research project approved in the Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.

Funding

The financial support, Research Project, # 298088 and research ethic, # IR.MUI.RESEARCH.REC.1398.371.

Author information

Authors and Affiliations

Authors

Contributions

Farideh Mohammadi conceived of the presented idea and carried out the experiments; Farzaneh Mohammadi wrote the manuscript and developed the theory and performed the computations; Zeynab Yavari contributed to the final version of the manuscript.

Corresponding author

Correspondence to Farzaneh Mohammadi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, F., Mohammadi, F. & Yavari, Z. Characterization of the cylindrical electrospun nanofibrous polysulfone membrane for hemodialysis with modelling approach. Med Biol Eng Comput 59, 1629–1641 (2021). https://doi.org/10.1007/s11517-021-02404-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02404-z

Keywords

Navigation