Skip to main content
Log in

Effects of long-term fasting and confinement on the cardiovascular activity

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Fasting has been demonstrated to improve health and slow aging in human and other species; however, its impact on the human body in the confined environment is still unclear. This work studies the effects of long-term fasting and confined environment on the cardiovascular activities of human via a 10-day fasting experiment with two groups of subjects being in confined (6 subjects) and unconfined (7 subjects) environments respectively and undergoing the same four-stage fasting/feeding process. It is found that the confinement has significant influences on the autonomic regulation to the heart rate during the fasting process by altering the activity of the parasympathetic nervous system, which is manifested by the significant higher pNN50, rMSSD, and Ln-HF of heart rate variability (HRV) (p < 0.05) and slower heart rate (p < 0.01) in the confined group than that in the unconfined group. Furthermore, the long-term fasting induces a series of changes in both groups, including reduced level of serum sodium (p < 0.01), increased the serum calcium (p < 0.05), prolonged QTc intervals (p < 0.05), and reduced systolic blood pressures (p < 0.05). These effects are potentially negative to human health and therefore need to be treated with caution.

Graphical abstract

Study of the effects of fasting and confinement on the cardiovascular activities

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Martini FH, Nath JL, Bartholomew EF, Ober WJPHNJ (2015) Fundamentals of anatomy and physiology. 2001. Pentice Hall, New Jersey

    Google Scholar 

  2. Longo VD, Mattson MP (2014) Fasting: molecular mechanisms and clinical applications. Cell Metab 19(2):181–192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Varady KA, Hellerstein MK (2007) Alternate-day fasting and chronic disease prevention: a review of human and animal trials. Am J Clin Nutr 86(1):7–13

    Article  PubMed  CAS  Google Scholar 

  4. Nematy M, Alinezhad-Namaghi M, Rashed MM, Mozhdehifard M, Sajjadi SS, Akhlaghi S, Sabery M, Mohajeri SAR, Shalaey N, Moohebati M (2012) Effects of Ramadan fasting on cardiovascular risk factors: a prospective observational study. Nutr J 11(1):1–7

    Article  CAS  Google Scholar 

  5. de Toledo FW, Grundler F, Bergouignan A, Drinda S, Michalsen A (2019) Safety, health improvement and well-being during a 4 to 21-day fasting period in an observational study including 1422 subjects. PLoS ONE 14(1):e0209353

    Article  CAS  Google Scholar 

  6. Al Suwaidi J, Bener A, Hajar H, Numan M (2004) Does hospitalization for congestive heart failure occur more frequently in Ramadan: a population-based study (1991–2001). Int J Cardiol 96(2):217–221

    Article  PubMed  CAS  Google Scholar 

  7. Temizhan A, Dönderici Ö, Ouz D, Demirbas B (1999) Is there any effect of Ramadan fasting on acute coronary heart disease events? Int J Cardiol 70(2):149–153

    Article  PubMed  CAS  Google Scholar 

  8. Schübel R, Nattenmüller J, Sookthai D, Nonnenmacher T, Graf ME, Riedl L, Schlett CL, Von Stackelberg O, Johnson T, Nabers D (2018) Effects of intermittent and continuous calorie restriction on body weight and metabolism over 50 wk: a randomized controlled trial. Am J Clin Nutr 108(5):933–945

    Article  PubMed  PubMed Central  Google Scholar 

  9. Leslie WS, Ford I, Sattar N, Hollingsworth KG, Adamson A, Sniehotta FF, McCombie L, Brosnahan N, Ross H, Mathers JC (2016) The diabetes remission clinical trial (DiRECT): protocol for a cluster randomised trial. BMC Fam Pract 17(1):1–10

    Article  Google Scholar 

  10. Vigo DE, Ogrinz B, Wan L, Bersenev E, Tuerlinckx F, Van den Bergh O, Aubert AE (2012) Sleep-wake differences in heart rate variability during a 105-day simulated mission to Mars. Aviat Space Environ Med 83(2):125–130

    Article  PubMed  Google Scholar 

  11. Vigo DE, Tuerlinckx F, Ogrinz B, Wan L, Simonelli G, Bersenev E, Van den Bergh O, Aubert AE (2013) Circadian rhythm of autonomic cardiovascular control during Mars500 simulated mission to Mars. Aviat Space Environ Med 84(10):1023–1028

    Article  PubMed  Google Scholar 

  12. Fisch C (1973) Relation of electrolyte disturbances to cardiac arrhythmias. Circulation 47(2):408–419

    Article  PubMed  CAS  Google Scholar 

  13. Frant M-S, Ross J (1970) Potassium ion specific electrode with high selectivity for potassium over sodium. Science 167(3920):987–988

    Article  PubMed  CAS  Google Scholar 

  14. Janssen JW, Helbing AR (1991) Arsenazo III: an improvement of the routine calcium determination in serum. Eur J Clin Chem Clin Biochem 29(3):197–201

  15. Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Spazzolini C (2009) Prevalence of the congenital long-QT syndrome. Circulation 120(18):1761–1767

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brugada R, Hong K, Dumaine R, Cordeiro J, Antzelevitch C (2004) Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 109(1):30–35

    Article  PubMed  CAS  Google Scholar 

  17. Lepeschkin E, Surawicz B (1952) The measurement of the QT interval of the electrocardiogram. Circulation 6(3):378–388

    Article  PubMed  CAS  Google Scholar 

  18. Bazzet HC (1920) An analysis of the time relationship of electrocardiograms. Heart 7:353–370

    Google Scholar 

  19. Recordati G (2003) A thermodynamic model of the sympathetic and parasympathetic nervous systems. Auton Neurosci 103(1–2):1–12

    Article  PubMed  Google Scholar 

  20. Shaffer F, Ginsberg J (2017) An overview of heart rate variability metrics and norms. Front Public Health 5:258

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stein P, Barzilay J, Domitrovich P, Chaves P, Gottdiener J, Heckbert S, Kronmal R (2007) The relationship of heart rate and heart rate variability to non-diabetic fasting glucose levels and the metabolic syndrome: the Cardiovascular Health Study. Diabet Med 24(8):855–863

    Article  PubMed  CAS  Google Scholar 

  22. Koskinen T, Kähönen M, Jula A, Mattsson N, Laitinen T, Keltikangas-Järvinen L, Viikari J, Välimäki I, Rönnemaa T, Raitakari OT (2009) Metabolic syndrome and short-term heart rate variability in young adults: the Cardiovascular Risk in Young Finns Study. Diabet Med 26(4):354–361

    Article  PubMed  CAS  Google Scholar 

  23. Mager DE, Wan R, Brown M, Cheng A, Wareski P, Abernethy DR, Mattson MP (2006) Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats. Faseb J 20(6):631–637

    Article  PubMed  CAS  Google Scholar 

  24. Cansel M, Tasolar H, Yagmur J, Ermis N, Acikgoz N, Eyyupkoca F, Pakdemir H, Ozdemir R (2014) The effects of Ramadan fasting on heart rate variability in healthy individuals: a prospective study. Anadolu Kardiyoloji Dergisi/the Anatolian Journal of Cardiology 14(5):413–416

    Article  PubMed  Google Scholar 

  25. Pan J, Tompkins WJ (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng 32(3):230–236

    Article  PubMed  CAS  Google Scholar 

  26. Ramshur JT (2010) Design, evaluation, and application of heart rate variability analysis software (HRVAS). University of Memphis Memphis, TN

    Google Scholar 

  27. Shaffer F, McCraty R, Zerr CL (2014) A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol 5:1040

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tsuji H, Venditti FJ Jr, Manders ES, Evans JC, Larson MG, Feldman CL, Levy D (1994) Reduced heart rate variability and mortality risk in an elderly cohort The Framingham Heart Study. Circulation 90(2):878–883

    Article  PubMed  CAS  Google Scholar 

  29. Malliani A, Pagani M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84(2):482–492

    Article  PubMed  CAS  Google Scholar 

  30. Billman GE (2013) The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol 4:26

    Article  PubMed  PubMed Central  Google Scholar 

  31. Faust O, Acharya R, Allen AR, Lin C (2008) Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques. IRBM 29(1):44–52

    Article  Google Scholar 

  32. Golberger A (1996) Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 347(9011):1312–1314

    Article  Google Scholar 

  33. Singh B, Singh M, Banga VK (2014) Sample entropy based HRV: effect of ECG sampling frequency. Biomedical Science and Engineering 2(3):68–72

    Google Scholar 

  34. Lake DE, Richman JS, Griffin MP, Moorman JR (2002) Sample entropy analysis of neonatal heart rate variability. A J Physiol-Regul Integr Comp Physiol 283(3):R789–R797

    Article  CAS  Google Scholar 

  35. Kuusela T (2013) Methodological aspects of heart rate variability analysis. In: Kamath MV, Watanabe M, Upton A (ed) Heart rate variability (HRV) signal analysis: Clinical applications. CRC Press, Boca Raton, pp 9–42

    Google Scholar 

  36. Liu C, Zhao L (2011) Using fuzzy measure entropy to improve the stability of traditional entropy measures. Computing in Cardiology 38:681–684

    Google Scholar 

  37. Maxwell SE, Delaney HD, Kelley K (2017) Designing experiments and analyzing data: a model comparison perspective. Routledge

    Book  Google Scholar 

  38. Keselman H, Rogan JC, Mendoza JL, Breen LJ (1980) Testing the validity conditions of repeated measures F tests. Psychol Bull 87(3):479

    Article  Google Scholar 

  39. Geisser S, Greenhouse SW (1958) An extension of box’s results on the use of the F distribution in multivariate analysis. Ann Math Stat 29(3):885–891

    Article  Google Scholar 

  40. Tukey JW (1991) The philosophy of multiple comparisons. Statist Sci 6(1):100–116

    Article  Google Scholar 

  41. Elsherif N, Turitto G (2011) Electrolyte disorders and arrhythmogenesis. Cardiol J 18(3):233–245

    Google Scholar 

  42. Hall KD (2020) Challenges of human nutrition research. Science 367(6484):1298–1300

    Article  PubMed  CAS  Google Scholar 

  43. Kerndt PR, Naughton JL, Driscoll CE, Loxterkamp DA (1982) Fasting: the history, pathophysiology and complications. West J Med 137(5):379

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Consolazio CF, Matoush LO, Johnson HL, Nelson RA, Krzywicki HJ (1967) Metabolic aspects of acute starvation in normal humans (10 days). Am J Clin Nutr 20(7):672–683

    Article  PubMed  CAS  Google Scholar 

  45. Eshghinia S, Mohammadzadeh F, Disorders M (2013) The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women. J Diabetes 12(1):1–4

    Google Scholar 

  46. Teng NIMF, Shahar S, Rajab NF, Manaf ZA, Johari MH, Ngah WZW (2013) Improvement of metabolic parameters in healthy older adult men following a fasting calorie restriction intervention. Aging Male 16(4):177–183

    Article  PubMed  CAS  Google Scholar 

  47. Erdem Y, Özkan G, Ulusoy Ş, Arıcı M, Derici Ü, Şengül Ş, Sindel Ş, Ertürk Ş (2018) The effect of intermittent fasting on blood pressure variability in patients with newly diagnosed hypertension or prehypertension. J Am Soc Hypertens 12(1):42–49

    Article  PubMed  Google Scholar 

  48. Horne B, Muhlestein J, Lappe D, May H, Carlquist J, Galenko O, Brunisholz K, Anderson J (2013) Randomized cross-over trial of short-term water-only fasting: metabolic and cardiovascular consequences. Nutr Metab Cardiovasc Dis 23(11):1050–1057

    Article  PubMed  CAS  Google Scholar 

  49. Spark RF, Arky RA, Boulter PR, Saudek CD, O’Brian JT (1975) Renin, aldosterone and glucagon in the natriuresis of fasting. N Engl J Med 292(25):1335–1340

    Article  PubMed  CAS  Google Scholar 

  50. Callis G, Sterchi D (1998) Decalcification of bone: literature review and practical study of various decalcifying agents. Methods, and their effects on bone histology. J Histotechnol 21(1):49–58

    Article  CAS  Google Scholar 

  51. Keys A, Brožek J, Henschel A, Mickelsen O, Taylor HL (1950) The biology of human starvation. (2 vols). Minnesota Press.

  52. Ellis LB (1946) Electrocardiographic abnormalities in severe malnutrition. Br Heart J 8(2):53

    Article  PubMed  PubMed Central  Google Scholar 

  53. Thwaites B, Bose M (1992) Very low calorie diets and pre-fasting prolonged QT interval. A hidden potential danger. West Indian Med J 41(4):169–171

    PubMed  CAS  Google Scholar 

  54. Khan IA (2002) Long QT syndrome: diagnosis and management. Am Heart J 143(1):7–14

    Article  PubMed  Google Scholar 

  55. Solianik R, Sujeta A, Terentjevienė A, Skurvydas A (2016) Effect of 48 h fasting on autonomic function, brain activity, cognition, and mood in amateur weight lifters. BioMed Res Int 2016:1503956 

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hargens AR, Richardson S (2009) Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight. Respir Physiol Neurob 169:S30–S33

    Article  Google Scholar 

  57. Soeters MR, Sauerwein HP, Groener JE, Aerts JM, Ackermans MT, Glatz JF, Fliers E, Serlie MJ (2007) Gender-related differences in the metabolic response to fasting. J Clin Endocrinol Metab 92(9):3646–3652

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Wenjun Liu, from Beijing Ziyuan Fasting Training Center, Beijing, China, contributed to recruiting volunteers and organizing the experiments.

Funding

The work is supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 61571165 (to KW), 61601143 (to QL), 81770328 (to QL), and 81871444 (to CL); the Advanced Space Medico-Engineering Research Project of China under Grant No. 18035020103 (to ZD); and the China Postdoctoral Science Foundation under Grant No. 2015M581448 (to QL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuanquan Wang or Henggui Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Detailed data for all indicators assessed during the experiment are available in the supplemental material. Supplementary Table S1 contains the data of body weight. Supplementary Table S2 contains the data of blood pressures. Supplementary Table S3 contains the data of serum electrolytes. Supplementary Table S4 contains the data of QT/QTc intervals. Supplementary Table S5 contains the data of heart rate (HR) and heart rate variability (HRV) indices.

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 96.8 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, Q., Wang, K. et al. Effects of long-term fasting and confinement on the cardiovascular activity. Med Biol Eng Comput 59, 1901–1915 (2021). https://doi.org/10.1007/s11517-021-02380-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02380-4

Keywords

Navigation