Skip to main content

Advertisement

Log in

Convolutional neural network for detection and classification of seizures in clinical data

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Epileptic seizure detection and classification in clinical electroencephalogram data still is a challenge, and only low sensitivity with a high rate of false positives has been achieved with commercially available seizure detection tools, which usually are patient non-specific. Epilepsy patients suffer from severe detrimental effects like physical injury or depression due to unpredictable seizures. However, even in hospitals due to the high rate of false positives, the seizure alert systems are of poor help for patients as tools of seizure detection are mostly trained on unrealistically clean data, containing little noise and obtained under controlled laboratory conditions, where patient groups are homogeneous, e.g. in terms of age or type of seizures. In this study authors present the approach for detection and classification of a seizure using clinical data of electroencephalograms and a convolutional neural network trained on features of brain synchronisation and power spectrum. Various deep learning methods were applied, and the network was trained on a very heterogeneous clinical electroencephalogram dataset. In total, eight different types of seizures were considered, and the patients were of various ages, health conditions and they were observed under clinical conditions. Despite this, the classifier presented in this paper achieved sensitivity and specificity equal to 0.68 and 0.67, accordingly, which is a significant improvement as compared to the known results for clinical data.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342:314–319

    Article  CAS  PubMed  Google Scholar 

  2. Brodie MJ (2017) Outcomes in newly diagnosed epilepsy in adolescents and adults: insights across a generation in Scotland. Seizure. 44:206–210

    Article  PubMed  Google Scholar 

  3. Patsalos PN, Perucca E (2003) Clinically important drug interactions in epilepsy: general features and interactions between antiepileptic drugs. Lancet Neurol 2:347–356

    Article  CAS  PubMed  Google Scholar 

  4. Kanner AM (2006) Depression and epilepsy: a new perspective on two closely related disorders. Epilepsy Curr 6:141–146

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee M, Hively N, Clap PE, et al Apparatus and method for epileptic seizure detection using non-linear techniques, US patent 5743860 A, April 28, 1996

  6. Iasemidis LD, Sackellares JC Seizure warning and prediction, US patent 6304775 B1, October 16, 2001

  7. Osorio I, Lyubushin A, Sornette D Seizure detection methods, apparatus, and systems using a wavelet transform maximum modulus algorithm, US patent 9549677 B2, July 20, 2012

  8. Denison TJ, Santa WA Seizure prediction, US patent 8594779 B2, April 30, 2007

  9. Mormann F, Kreuz T, Rieke C, Andrzejak RG, Kraskov A, David P, Elger CE, Lehnertz K (2005) On the predictability of epileptic seizures. Clin Neurophysiol 116:569–597

    Article  PubMed  Google Scholar 

  10. Cook MJ, O’Brien TJ, Berkovic SF, Murphy M, Morokoff A, Fabinyi G et al (2013) Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol 12:563–571

    Article  PubMed  Google Scholar 

  11. D’Alessandro M, Esteller R, Vachtsevanos G, Hinson A, Echauz A, Litt B (2003) Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: a report of four patients. IEEE Trans Biomed Eng 50(5):603–615

    Article  PubMed  Google Scholar 

  12. Park Y, Luo L, Parhi KK, Netoff T (2011) Seizure prediction with spectral power of EEG using cost-sensitive support vector machines. Epilepsia 52:1761–1770

    Article  PubMed  Google Scholar 

  13. Mirowski P, Madhavan D, Lecun Y, Kuzniecky R (2009 Nov) Classification of patterns of EEG synchronization for seizure prediction. Clin Neurophysiol 120(11):1927–1940

    Article  PubMed  Google Scholar 

  14. Nasehi S, Pourghassem H (2013) A novel fast epileptic seizure onset detection algorithm using general tensor discriminant analysis. J Clin Neurophysiol 30(4):362–370

    Article  PubMed  Google Scholar 

  15. Shoeb A, Kharbouch J, Soegaard J et al (2011) A machine learning algorithm for detecting seizure termination in scalp EEG. Epilepsy Behav 22(Suppl. 1):S36–S43

    Article  PubMed  Google Scholar 

  16. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H (2018) Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med 100:270–278

    Article  PubMed  Google Scholar 

  17. Avcu MT, Zhang Z, Chan DWS Seizure detection using least EEG channels by deep convolutional neural network. ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and signal processing (ICASSP), Brighton, 2019, pp. 1120–1124

  18. Choi G et al. A novel multi-scale 3D CNN with deep neural network for epileptic seizure detection, 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, 2019, pp. 1–2

  19. Wei X, Zhou L, Chen Z, Zhang L, Zhou Y (2018) Automatic seizure detection using three-dimensional CNN based on multi-channel EEG. BMC Med Inform Decision Making 18:111

    Article  Google Scholar 

  20. Khan H, Marcuse L, Fields M, Swann K, Yener B (2018) Focal onset seizure prediction using convolutional networks. IEEE Trans Biomed Eng 65(9):2109–2118

    Article  PubMed  Google Scholar 

  21. Truong ND, Nguyen AD, Kuhlmann L, Bonyadi MR, Yang J, Ippolito S, Kavehei O (2018) Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Netw 105:104–111

    Article  PubMed  Google Scholar 

  22. Jana R, Bhattacharyya S, Das S (2020) Patient-specific seizure prediction using the convolutional neural networks. In: Bhattacharyya S, Mitra S, Dutta P (eds) Intelligence enabled research. Advances in intelligent systems and computing, vol 1109. Springer, Singapore

    Google Scholar 

  23. Obeid I, Picone J (2017) Machine learning approaches to automatic interpretation of EEGs. Biomedical Signal Processing in Big Data. CRC Press

  24. Schulc E, Unterberger I, Saboor S, Hilbe J, Ertl M, Ammenwerth E, Trinka E, Them C (2011) Measurement and quantification of generalized tonic-clonic seizures in epilepsy patients by means of accelerometry—an explorative study. Epilepsy Res 95(1–2):173–183

    Article  PubMed  Google Scholar 

  25. Van de Vel A, Verhaert K, Ceulemans B (2014) Critical evaluation of four different seizure detection systems tested on one patient with focal and generalized tonic and clonic seizures. Epilepsy Behav E&B 37:91–94

    Article  Google Scholar 

  26. De Bruijne GR, Sommen PCW, Aarts RM (2009) Detection of epileptic seizures through audio classification. In: 4th European Conference of the International Federation for Medical and Biological Engineering, pp 1450–1454

    Chapter  Google Scholar 

  27. Regalia G, Onorati F, Lai M, Caborni C, Picard RW (2019) Multimodal wrist-worn devices for seizure detection and advancing research: focus on the Empatica wristbands. Epilepsy Res 153:79–82

    Article  PubMed  Google Scholar 

  28. Bidwell J, Khuwatsamrit T, Askew B, Ehrenberg JA, Helmers S (2015) Seizure reporting technologies for epilepsy treatment: a review of clinical information needs and supporting technologies. Seizure 32:109–117

    Article  PubMed  Google Scholar 

  29. Scheuer ML, Bagic A, Wilson SB (2017) Spike detection: inter-reader agreement and a statistical Turing test on a large data set. Clin Neurophysiol 128(1):243–250

    Article  PubMed  Google Scholar 

  30. Freestone DR, Karoly PJ, Cook MJ (2017) A forward-looking review of seizure prediction. Curr Opin Neurol, vol. In Press

  31. Boex C, Seeck M, Vulliemoz S et al (2011) Chronic deep brain stimulation in mesial temporal lobe epilepsy. Seizure 20:485–490

    Article  PubMed  Google Scholar 

  32. Choi SI, Obeid I, Jacobson M, Picone J The Temple University Hospital EEG Corpus. The Neural Engineering Data Consortium, College of Eng., Temple Univ., 2013. [Online]. Available: http://www.isip.piconepress.com/projects/tuh_eeg. [Accessed: 21-Feb-2018]

  33. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mormann F, Lehnertz K, David P, Elger CE (2000) Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D 144:358–369

    Article  Google Scholar 

  35. Truccolo W, Ahmed OJ, Harrison MT, Eskandar EN, Cosgrove GR, Madsen JR, Blum AS, Potter NS, Hochberg LR, Cash SS (2014) Neuronal ensemble synchrony during human focal seizures. J Neurosci 34:9927–9944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiruska P, de Curtis M, Jefferys JG, Schevon CA, Schiff SJ, Schindler K (2013) Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol 591(Pt 4):787–797

    Article  CAS  PubMed  Google Scholar 

  37. Netoff TI, Schiff SJ (2002) Decreased neuronal synchronization during experimental seizures. J Neurosci 22:7297–7307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cymerblit-Sabba A, Schiller Y (2012) Development of hypersynchrony in the cortical network during chemoconvulsant-induced epileptic seizures in vivo. J Neurophysiol 107:1718–1730

    Article  CAS  PubMed  Google Scholar 

  39. Topolnik L, Steriade M, Timofeev I (2003) Partial cortical deafferentation promotes development of paroxysmal activity. Cereb Cortex 13:883–893

    Article  PubMed  Google Scholar 

  40. Timofeev I, Steriade M (2004) Neocortical seizures: initiation, development and cessation. Neuroscience 123:299–336

    Article  CAS  PubMed  Google Scholar 

  41. Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    Article  CAS  PubMed  Google Scholar 

  42. Roskies A (1999) The binding problem: special issue. Neuron 24:7–125

    Article  CAS  PubMed  Google Scholar 

  43. Brechet R, Lecasble R (1965) Reactivity of mu-rhythm to ticker. Electroencephalogr Clin Neurophysiol 18:721–722

    Google Scholar 

  44. Koshino Y, Niedermeyer E (1975) Enhancement of rolandic mu-rhythm by pattern vision. Electroencephalogr Clin Neurophysiol 38:535–538

    Article  CAS  PubMed  Google Scholar 

  45. Pfurtscheller G, Klimesch W (1992) Functional topography during a visuoverbal judgement task studied with event-related desynchronization mapping. J Clin Neurophysiol 9:120–131

    Article  CAS  PubMed  Google Scholar 

  46. Le van Quyen M, Foucher J, Lachaux JP, Rodriguez E, Lutz A, Martinerie J, Varela F (2001) Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J Neurosci Methods 111:83–98

    Article  Google Scholar 

  47. Tass P, Rosenblum MG, Weule J, Kurths J, Pikovsky A, Volkmann J, Schnitzler A, Freund HJ (1998) Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phys Rev Lett 81:3291–3294

    Article  CAS  Google Scholar 

  48. Fisher RS, Webber WR, Lesser RP, Arroyo S, Uematsu S (1992) Highfrequency EEG activity at the start of seizures. J Clin Neurophysiol 9:441–448

    Article  CAS  PubMed  Google Scholar 

  49. [Online] https://www.kaggle.com/c/seizure-prediction [Accessed on 2018-03-02]

  50. Tatum WO (2014) Ellen R. grass lecture: extraordinary EEG. Neurodiagnostic J 54(1):3–21

    Google Scholar 

  51. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551

    Article  Google Scholar 

  52. LeCun Y, Bottou L, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  53. Glorot X, Bordes A and Bengio Y Deep sparse rectifier neural networks (PDF). AISTATS, 2011

  54. Abadi, M., Agarwal, A., Barham, P., et al. TensorFlow: large-scale machine learning on heterogeneous systems, 2015. Software is available from tensorflow.org. Accessed 2019-08-01

  55. Kingma D, Jimmy BA A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014

  56. Mirowski P, Madhavan D, LeCun Y, Kuzniecky R (Nov 2009) Classification of patterns of EEG synchronization for seizure prediction. Electroencephalogr Clin Neurophysiol 120(11):1927–1940

    Google Scholar 

  57. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  58. Japkowicz N, Shah M (2011) Evaluating learning algorithms: a classification perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  59. Snyder DE, Echauz J, Grimes DB, Litt B (2008) The statistics of a practical seizure warning system. J Neural Eng 5:392–401

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hajian-Tilaki K (2013) Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 4:627–635

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

Tomas Iesmantas was supported by the postdoctoral fellowship grant (2016–2018) from Kaunas University of Technology and Department of Mathematics and Natural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Iešmantas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iešmantas, T., Alzbutas, R. Convolutional neural network for detection and classification of seizures in clinical data. Med Biol Eng Comput 58, 1919–1932 (2020). https://doi.org/10.1007/s11517-020-02208-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02208-7

Keywords

Navigation