Anderson TL (2017) Fracture mechanics: fundamentals and applications. CRC Press
Arora A, Hakim I, Baxter J, Rathnasingham R, Srinivasan R, Fletcher DA, Mitragotri S (2007) Needle-free delivery of macromolecules across the skin by nanoliter-volume pulsed microjets. Proc Natl Acad Sci 104(11):4255–4260
CAS
PubMed
Article
Google Scholar
Aroussi AA, Sami IM, Leguerrier A, Verhoye JP (2006) The blower: a useful tool to complete thrombectomy of the mechanical prosthetic valve. Ann Thoracic Surg 81(5):1911–1912
Article
Google Scholar
Asadian A, Patel RV, Kermani MR (2014) Dynamics of translational friction in needle–tissue interaction during needle insertion. Ann Biomed Eng 42(1):73–85
PubMed
Article
Google Scholar
Atkins A (2005) Toughness and cutting: a new way of simultaneously determining ductile fracture toughness and strength. Eng Fract Mech 72(6):849–860
Article
Google Scholar
Azar T, Hayward V (2008) Estimation of the fracture toughness of soft tissue from needle insertion. In: International symposium on biomedical simulation. Springer, pp 166–175
Babaiasl M, Yang F, Chen Y, Ding J, Swensen JP (2019) Predicting depth of cut of water-jet in soft tissue simulants based on finite element analysis with the application to fracture-directed water-jet steerable needles. In: 2019 International symposium on medical robotics (ISMR). IEEE, pp 1–7
Babaiasl M, Yang F, Swensen JP (2018) Towards water-jet steerable needles. In: 2018 7Th IEEE international conference on biomedical robotics and biomechatronics (biorob), pp 601–608. IEEE
Bahls T, Fröhlich FA, Hellings A, Deutschmann B, Albu-Schäffer AO (2016) Extending the capability of using a waterjet in surgical interventions by the use of robotics. IEEE Trans Biomed Eng 64(2):284–294
PubMed
Article
Google Scholar
Barnett AC, Lee YS, Moore JZ (2016) Fracture mechanics model of needle cutting tissue. J Manuf Sci Eng 138(1):011005
Baxter J, Mitragotri S (2005) Jet-induced skin puncture and its impact on needle-free jet injections: experimental studies and a predictive model. J Controll Releas 106(3):361–373
CAS
Article
Google Scholar
Caputo WJ, Beggs DJ, DeFede JL, Simm L, Dharma H (2008) A prospective randomised controlled clinical trial comparing hydrosurgery debridement with conventional surgical debridement in lower extremity ulcers. Int Wound J 5(2):288–294
PubMed
Article
Google Scholar
Chang YC, Chen Y, Ning J, Cheng H, Rock M, Amer M, Feng S, Falahati M, Wang LJ, Chen RKR et al (2019) No such thing as trash: A 3d printable polymer composite comprised of oil extracted spent coffee grounds and polylactic acid with enhanced impact toughness. ACS Sustainable Chemistry & Engineering
Chua B, Desai SP, Tierney MJ, Tamada JA, Jina AN (2013) Effect of microneedles shape on skin penetration and minimally invasive continuous glucose monitoring in vivo. Sens Actuators A Phys 203:373–381
CAS
Article
Google Scholar
Comley K, Fleck N (2011) Deep penetration and liquid injection into adipose tissue. J Mech Mater Struct 6(1):127–140
Article
Google Scholar
den Dunnen S, Dankelman J, Kerkhoffs GM, Tuijthof GJ (2016) How do jet time, pressure and bone volume fraction influence the drilling depth when waterjet drilling in porcine bone? J Mech Behav Biomed Mater 62:495–503
PubMed
Article
Google Scholar
den Dunnen S, Mulder L, Kerkhoffs GM, Dankelman J, Tuijthof GJ (2013) Waterjet drilling in porcine bone: The effect of the nozzle diameter and bone architecture on the hole dimensions. J Mech Behav Biomed Mater 27:84–93
PubMed
Article
Google Scholar
El-Domiaty A, Abdel-Rahman A (1997) Fracture mechanics-based model of abrasive waterjet cutting for brittle materials. Int J Adv Manuf Technol 13(3):172–181
Article
Google Scholar
Falahati M, Zhou W, Yi A, Li L (2019) Fabrication of polymeric lenses using magnetic liquid molds. Appl Phys Lett 114(20):203701
Falahati M, Zhou W, Yi A, Li L (2020) Development of an adjustable-focus ferrogel mirror. Opt & Laser Technol 125:106021
Granick MS, Posnett J, Jacoby BSM, Noruthun S, Ganchi PA, Datiashvili RO (2006) Efficacy and cost-effectiveness of a high-powered parallel waterjet for wound debridement. Wound Repair Regener 14(4):394–397
Article
Google Scholar
Hu Y, Liu T, Ding J, Zhong W (2013) Behavior of high density polyethylene and its nanocomposites under static and dynamic compression loadings. Polym Compos 34(3):417–425
CAS
Article
Google Scholar
Kaehler G, Sold M, Fischer K, Post S, Enderle M (2007) Selective fluid cushion in the submucosal layer by water jet: advantage for endoscopic mucosal resection. Eur Surg Res 39(2):93–97
CAS
PubMed
Article
Google Scholar
Kok AC, den Dunnen S, Lambers KT, Kerkhoffs GM, Tuijthof GJ (2019) Feasibility study to determine if microfracture surgery using water jet drilling is potentially safe for talar chondral defects in a caprine model. Cartilage, pp 1947603519880332
Kundu PK, Cohen IM (2008) Fluid mechanics, 4th edn. Academic Press, San Diego
Google Scholar
Liu D, Zhu H, Huang C, Wang J, Yao P (2016) Prediction model of depth of penetration for alumina ceramics turned by abrasive waterjet—finite element method and experimental study. Int J Adv Manuf Technol 87 (9-12):2673–2682
Article
Google Scholar
Liu J, Bai Y, Xu C (2014) Evaluation of ductile fracture models in finite element simulation of metal cutting processes. J Manuf Sci Eng 136(1):011010
Liu J, Ko JH, Secretov E, Huang E, Chukwu C, West J, Piserchia K, Galiano RD (2015) Comparing the hydrosurgery system to conventional debridement techniques for the treatment of delayed healing wounds: a prospective, randomised clinical trial to investigate clinical efficacy and cost-effectiveness. Int Wound J 12(4):456–461
PubMed
Article
Google Scholar
Mahvash M, Hayward V (2001) Haptic rendering of cutting: A fracture mechanics approach
Misra S, Reed KB, Douglas AS, Ramesh K, Okamura AM (2008) Needle-tissue interaction forces for bevel-tip steerable needles. In: 2008. Biorob 2008. 2nd IEEE RAS & EMBS international conference on Biomedical robotics and biomechatronics. IEEE, pp 224–231
Misra S, Reed KB, Schafer BW, Ramesh K, Okamura AM (2010) Mechanics of flexible needles robotically steered through soft tissue. Int J Robot Res 29(13):1640–1660
CAS
Article
Google Scholar
Mitragotri S (2006) Current status and future prospects of needle-free liquid jet injectors. Nat Rev Drug Discov 5(7):543
PubMed
Article
Google Scholar
Morad S, Ulbricht C, Harkin P, Chan J, Parker K, Vaidyanathan R (2014) Flexible robotic device for spinal surgery. In: 2014 IEEE International conference on robotics and biomimetics (ROBIO 2014). IEEE, pp 235–240
Morad S, Ulbricht C, Harkin P, Chan J, Parker K, Vaidyanathan R (2015) Modelling and control of a water jet cutting probe for flexible surgical robot. In: 2015 IEEE International conference on automation science and engineering (CASE). IEEE, pp 1159–1164
Moradiafrapoli M, Marston J (2017) High-speed video investigation of jet dynamics from narrow orifices for needle-free injection. Chem Eng Res Des 117:110–121
CAS
Article
Google Scholar
Mrozek RA, Leighliter B, Gold CS, Beringer IR, Jian HY, VanLandingham MR, Moy P, Foster MH, Lenhart JL (2015) The relationship between mechanical properties and ballistic penetration depth in a viscoelastic gel. J Mech Behav Biomed Mater 44:109–120
CAS
PubMed
Article
Google Scholar
Oertel J, Gaab MR, Knapp A, Essig H, Warzok R, Piek J (2003) Water jet dissection in neurosurgery: experimental results in the porcine cadaveric brain. Neurosurgery 52(1):153–159
PubMed
Google Scholar
Oertel J, Gaab MR, Warzok R, Piek J (2003) Waterjet dissection in the brain: review of the experimental and clinical data with special reference to meningioma surgery. Neurosurg Rev 26(26-4):168–174
PubMed
Article
Google Scholar
Oertel J, Gen M, Krauss J, Zumkeller M, Gaab MR (2006) The use of waterjet dissection in endoscopic neurosurgery. J Neurosurg 105(6):928–931
PubMed
Article
Google Scholar
Ogden R, Saccomandi G, Sgura I (2004) Fitting hyperelastic models to experimental data. Comput Mech 34(6):484–502
Article
Google Scholar
Ogden RW (1972) Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A Math Phys Sci 326(1567):565– 584
CAS
Google Scholar
Oh TM, Cho GC (2016) Rock cutting depth model based on kinetic energy of abrasive waterjet. Rock Mech Rock Eng 49(3):1059–1072
Article
Google Scholar
Orlowski KA, Ochrymiuk T, Atkins A, Chuchala D (2013) Application of fracture mechanics for energetic effects predictions while wood sawing. Wood Sci Technol 47(5):949–963
CAS
Article
Google Scholar
Rau H, Duessel A, Wurzbacher S (2008) The use of water-jet dissection in open and laparoscopic liver resection. HPB 10(4):275–280
CAS
PubMed
PubMed Central
Article
Google Scholar
Rau H, Meyer G, Jauch K, Cohnert T, Buttler E, Schildberg F (1996) Liver resection with the water jet: conventional and laparoscopic surgery. Der Chirurg Z Gebiete Oper Med 67(5):546–551
CAS
Google Scholar
Roesthuis RJ, van de Berg NJ, van den Dobbelsteen JJ, Misra S (2015) Modeling and steering of a novel actuated-tip needle through a soft-tissue simulant using fiber bragg grating sensors. In: 2015 IEEE international conference on Robotics and automation (ICRA). IEEE, pp 2283–2289
Römgens AM, Rem-Bronneberg D, Kassies R, Hijlkema M, Bader DL, Oomens CW, van Bruggen MP (2016) Penetration and delivery characteristics of repetitive microjet injection into the skin. J Controll Releas 234:98–103
Article
CAS
Google Scholar
Sato C, Nakano T, Nakagawa A, Yamada M, Yamamoto H, Kamei T, Miyata G, Sato A, Fujishima F, Nakai M et al (2013) Experimental application of pulsed laser-induced water jet for endoscopic submucosal dissection: Mechanical investigation and preliminary experiment in swine. Dig Endosc 25(3):255– 263
PubMed
Article
Google Scholar
Schramm-Baxter J, Katrencik J, Mitragotri S (2004) Jet injection into polyacrylamide gels: investigation of jet injection mechanics. J Biomech 37(8):1181–1188
PubMed
Article
Google Scholar
Schramm-Baxter J, Mitragotri S (2004) Needle-free jet injections: dependence of jet penetration and dispersion in the skin on jet power. J Control Releas 97(3):527–535
CAS
Article
Google Scholar
Seok J, Oh CT, Kwon HJ, Kwon TR, Choi EJ, Choi SY, Mun SK, Han SH, Kim BJ, Kim MN (2016) Investigating skin penetration depth and shape following needle-free injection at different pressures: a cadaveric study. Lasers Surgery Med 48(6):624– 628
Article
Google Scholar
Seto T, Yamamoto H, Takayama K, Nakagawa A, Tominaga T (2011) Characteristics of an actuator-driven pulsed water jet generator to dissecting soft tissue. Rev Sci Instrum 82(5):055105
Shergold OA, Fleck NA (2004) Mechanisms of deep penetration of soft solids, with application to the injection and wounding of skin. Proc R Soc Lond Ser A Math Phys Eng Sci 460(2050):3037–3058
Article
Google Scholar
Shergold OA, Fleck NA, King TS (2006) The penetration of a soft solid by a liquid jet, with application to the administration of a needle-free injection. J Biomech 39(14):2593–2602
PubMed
Article
Google Scholar
Shergold OA, Fleck NA, Radford D (2006) The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int J Impact Eng 32(9):1384– 1402
Article
Google Scholar
Shi H, Jiang SJ, Li B, Fu DK, Xin P, Wang YG (2011) Natural orifice transluminal endoscopic wedge hepatic resection with a water-jet hybrid knife in a non-survival porcine model. World J Gastroenterol: WJG 17(7):926
PubMed
Article
Google Scholar
Tagawa Y, Oudalov N, El Ghalbzouri A, Sun C, Lohse D (2013) Needle-free injection into skin and soft matter with highly focused microjets. Lab Chip 13(7):1357–1363
CAS
PubMed
Article
Google Scholar
Tschan C, Tschan K, Krauss J, Oertel J (2009) First experimental results with a new waterjet dissector: Erbejet 2. Acta Neurochirurg 151(11):1473–1482
CAS
Article
Google Scholar
Vollmer CM, Dixon E, Sahajpal A, Cattral MS, Grant DR, Gallinger S, Taylor BR, Greig PD (2006) Water-jet dissection for parenchymal division during hepatectomy. HPB 8(5):377– 385
PubMed
PubMed Central
Article
Google Scholar
Wang J (2007) Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics. Int J Mech Sci 49(3):306–316
Article
Google Scholar
Wang J (2009) A new model for predicting the depth of cut in abrasive waterjet contouring of alumina ceramics. J Mater Process Technol 209(5):2314–2320
CAS
Article
Google Scholar
Wang J, Guo D (2002) A predictive depth of penetration model for abrasive waterjet cutting of polymer matrix composites. J Mater Process Technol 121(2-3):390–394
Article
Google Scholar
Wilkins R, Graham E (1993) An erosion model for waterjet cutting. J Eng Industry 115(1):57–61
Article
Google Scholar
Yahagi N, Neuhaus H, Schumacher B, Neugebauer A, Kaehler G, Schenk M, Fischer K, Fujishiro M, Enderle M (2009) Comparison of standard endoscopic submucosal dissection (esd) versus an optimized esd technique for the colon: an animal study. Endoscopy 41(04):340–345
CAS
PubMed
Article
Google Scholar
Yamada M, Nakano T, Sato C, Nakagawa A, Fujishima F, Kawagishi N, Nakanishi C, Sakurai T, Miyata G, Tominaga T et al (2014) The dissection profile and mechanism of tissue-selective dissection of the piezo actuator-driven pulsed water jet as a surgical instrument: Laboratory investigation using swine liver. Eur Surg Res 53(1-4):61–72
PubMed
Article
Google Scholar
Yang F, Babaiasl M, Swensen JP (2019) Fracture-directed steerable needles. J Med Robot Res 4(01):1842002
Yoshimi Tanaka Rikimaru Kuwabara YHNTKJPG, Osada Y (2005) Determination of fracture energy of high strength double network hydrogels. J Phys Chem B 109:11559–11562
PubMed
Article
CAS
Google Scholar