Skip to main content

Chronic gastritis classification using gastric X-ray images with a semi-supervised learning method based on tri-training

Abstract

High-quality annotations for medical images are always costly and scarce. Many applications of deep learning in the field of medical image analysis face the problem of insufficient annotated data. In this paper, we present a semi-supervised learning method for chronic gastritis classification using gastric X-ray images. The proposed semi-supervised learning method based on tri-training can leverage unannotated data to boost the performance that is achieved with a small amount of annotated data. We utilize a novel learning method named Between-Class learning (BC learning) that can considerably enhance the performance of our semi-supervised learning method. As a result, our method can effectively learn from unannotated data and achieve high diagnostic accuracy for chronic gastritis.

Gastritis classification using gastric X-ray images with semi-supervised learning.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Bai W, Oktay O, Sinclair M, Suzuki H, Rajchl M, Tarroni G, Glocker B, King A, Matthews PM, Rueckert D (2017) Semi-supervised learning for network-based cardiac mr image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 253–260

  2. 2.

    Baur C, Albarqouni S, Navab N (2017) Semi-supervised deep learning for fully convolutional networks. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 311–319

  3. 3.

    Bechar MEA, Settouti N, Barra V, Chikh MA (2018) Semi-supervised superpixel classification for medical images segmentation: application to detection of glaucoma disease. Multidim Syst Sign Process 29(3):979–998

    Article  Google Scholar 

  4. 4.

    Breiman L (2001) Random forests. Machine Learning 45(1):5–32

    Article  Google Scholar 

  5. 5.

    Chen G, Zhang J, Zhuo D, Pan Y, Pang C (2019) Identification of pulmonary nodules via ct images with hierarchical fully convolutional networks. Med Biol Eng Comput, pp 1–14

  6. 6.

    Cortes C, Vapnik V (1995) Support-vector networks. Machine Learning 20(3):273–297

    Google Scholar 

  7. 7.

    Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 248–255

  8. 8.

    Dheer S, Levine M, Redfern R, Metz D, Rubesin S, Laufer I (2002) Radiographically diagnosed antral gastritis: findings in patients with and without helicobacter pylori infection. The British Journal of Radiology 75(898):805–811

    CAS  Article  Google Scholar 

  9. 9.

    Efron B (1992) Bootstrap methods: another look at the jackknife. In: Breakthroughs in statistics. Springer, pp 569–593

  10. 10.

    Fisher RA (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics 7(2):179–188

    Article  Google Scholar 

  11. 11.

    Han G, Liu X, Zheng G, Wang M, Huang S (2018) Automatic recognition of 3d ggo ct imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning cnns. Med Biol Eng Comput 56(12):2201–2212

    Article  Google Scholar 

  12. 12.

    Hatipoglu N, Bilgin G (2017) Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships. Med Biol Eng Comput 55(10):1829–1848

    Article  Google Scholar 

  13. 13.

    He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  14. 14.

    Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: CVPR, vol 1 , p 3

  15. 15.

    Kimura K, Takemoto T (1969) An endoscopic recognition of the atrophic border and its significance in chronic gastritis. Endoscopy 1(03):87–97

    Article  Google Scholar 

  16. 16.

    Kudo T, Kakizaki S, Sohara N, Onozato Y, Okamura S, Inui Y, Mori M (2011) Analysis of abc (d) stratification for screening patients with gastric cancer. World Journal of Gastroenterology: WJG 17(43):4793

    Article  Google Scholar 

  17. 17.

    LeCun Y, Bengio Y, Hinton G (2015) Deep Learning. Nature 521(7553):436

    CAS  Article  Google Scholar 

  18. 18.

    Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Medical Image Analysis 42:60–88

    Article  Google Scholar 

  19. 19.

    Milletari F, Navab N, Ahmadi SA (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). IEEE, pp 565–571

  20. 20.

    Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer, pp 234–241

  21. 21.

    Setio AAA, Traverso A, De Bel T, Berens MS, van den Bogaard C, Cerello P, Chen H, Dou Q, Fantacci ME, Geurts B, et al. (2017) Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Medical Image Analysis 42:1–13

    Article  Google Scholar 

  22. 22.

    She Q, Hu B, Luo Z, Nguyen T, Zhang Y (2019) A hierarchical semi-supervised extreme learning machine method for eeg recognition. Med Biol Eng Comput 57(1):147–157

    Article  Google Scholar 

  23. 23.

    Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Transactions on Medical Imaging 35(5):1285–1298

    Article  Google Scholar 

  24. 24.

    Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826

  25. 25.

    Togo R, Ishihara K, Ogawa T, Haseyama M (2016) Estimation of salient regions related to chronic gastritis using gastric x-ray images. Computers in Biology and Medicine 77:9–15

    Article  Google Scholar 

  26. 26.

    Togo R, Yamamichi N, Mabe K, Takahashi Y, Takeuchi C, Kato M, Sakamoto N, Ishihara K, Ogawa T, Haseyama M (2018) Detection of gastritis by a deep convolutional neural network from double-contrast upper gastrointestinal barium x-ray radiography. Journal of Gastroenterology, pp 1–9

  27. 27.

    Tokozume Y, Ushiku Y, Harada T (2018) Between-class learning for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5486–5494

  28. 28.

    Vivanti R, Joskowicz L, Lev-Cohain N, Ephrat A, Sosna J (2018) Patient-specific and global convolutional neural networks for robust automatic liver tumor delineation in follow-up ct studies. Med Biol Eng Comput 56(9):1699–1713

    Article  Google Scholar 

  29. 29.

    Yamamichi N, Hirano C, Ichinose M, Takahashi Y, Minatsuki C, Matsuda R, Nakayama C, Shimamoto T, Kodashima S, Ono S, et al. (2016) Atrophic gastritis and enlarged gastric folds diagnosed by double-contrast upper gastrointestinal barium x-ray radiography are useful to predict future gastric cancer development based on the 3-year prospective observation. Gastric Cancer 19(3):1016–1022

    Article  Google Scholar 

  30. 30.

    Zhang H, Cisse M, Dauphin YN, Lopez-Paz D (2017) Mixup: Beyond empirical risk minimization. arXiv:1710.09412

  31. 31.

    Zhang Y, Yang L, Chen J, Fredericksen M, Hughes DP, Chen DZ (2017) Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 408–416

  32. 32.

    Zhou ZH, Li M (2005) Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans Knowl Data Eng 17(11):1529–1541

    Article  Google Scholar 

  33. 33.

    Zhou ZH, Li M (2010) Semi-supervised learning by disagreement. Knowl Inf Syst 24(3):415–439

    Article  Google Scholar 

Download references

Acknowledgments

The clinical data were acquired at The University of Tokyo Hospital in Japan. We express our thanks to Katsuhiro Mabe of the Junpukai Health Maintenance Center and Nobutake Yamamichi of The University of Tokyo Hospital.

Funding

This study was partly supported by JSPS KAKENHI Grant number JP17H01744.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zongyao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Togo, R., Ogawa, T. et al. Chronic gastritis classification using gastric X-ray images with a semi-supervised learning method based on tri-training. Med Biol Eng Comput 58, 1239–1250 (2020). https://doi.org/10.1007/s11517-020-02159-z

Download citation

Keywords

  • Chronic gastritis
  • Computer-aided diagnosis
  • Medical image analysis
  • Convolutional neural network
  • Semi-supervised learning