Skip to main content
Log in

Proposal of hemodynamically improved design of an axial flow blood pump for LVAD

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Left ventricular assist devices (LVAD) emerges as an effective clinical device providing life-saving support to heart patients. The design of blood pump of an LVAD involves incredible accuracy and thorough understanding of hemodynamics to mimic the functionality of a healthy ventricle. This work studies hemodynamics around an LVAD and proposes an improved model of axial blood pump for cardiac circulation without any hemolysis complications through numerical investigations. A three-dimensional study on different versions of the impeller with three curved blades (pump I) and spiral blade (pump II) is carried out by utilizing computational fluid dynamics software ANSYS-CFX at a range of rotational speeds and flow rates. The non-Newtonian blood flow through pump is modeled by using Bird-Carreau model. To capture the change in the flow field near the rotating blade, a transient blade row model was employed. The proposal of spiral blade impeller was found to be more compatible as per the hemolytic performance. It considerably reduces the blood damage to two times lesser value than that by pump I and also improves the quality blood flow field. The spiral blade provides a guiding path to the blood particle and avoids mixing of different bloodstreams, thus reducing the eddy losses.

The graphical abstract shows the performance enhancement of the axial blood pump. The model proposed by Peng et al. (Comput Methods Biomech Biomed Engin 17(7):723–727, 2014) has been upgraded to two new versions by redesigning its impeller. Proposed design (pump II) shows improvement in pressure distribution (a) and reduction in hemolysis (in the case of pump II) index (b).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K et al (2009) Heart disease and stroke statistics 2009 update: a report from the American heart association statistics committee and stroke statistics subcommittee. Circulation 119:e21–e181

    PubMed  Google Scholar 

  2. Wiedemann D, Haberl T, Riebandt J, Simon P, Laufer G, Zimpfer D, Laufer G (2014) Ventricular assist devices- evolution of surgical heart failure treatment. Euro Cardio R 9(1):54–58

    Article  Google Scholar 

  3. Bumrungpetch J, Mechanism design of ventricular assist device. Ph.D. Thesis, Queensland University of Technology, Australia, 2016

  4. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, Sun B, Tatooles AJ, Delgado RM 3rd, Long JW, Wozniak TC, Ghumman W, Farrar DJ, Frazier OH, HeartMate II Investigators (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361(23):2241–2251

    Article  CAS  Google Scholar 

  5. Patel H, Madanieh R, Kosmas CE, Vatti SK, Vittorio T (2015) Complications of continuous-flow mechanical circulatory support devices. Clin Med Insights Cardiol 9(2):15–21

    PubMed  PubMed Central  Google Scholar 

  6. Ravichandran AK, Parker J, Novak E, Joseph SM, Schilling JD, Ewald GA, Silvestry S (2014) Hemolysis in left ventricular assist device: a retrospective analysis of outcomes. J Heart Lung Transplant 33(1):44–50

    Article  Google Scholar 

  7. Zhu L, Zhang X, Yao Z (2010) Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics. Artif Organs 34(3):185–192

    Article  Google Scholar 

  8. Yu H, Jangia G, Thevenin D (2015) Computational fluid dynamics-based design optimization method for Archimedes screw blood pumps. Artif Organs 40(4):341–352

    Article  Google Scholar 

  9. Kapadia JY, Pierce KC, Poupore AK, Throckmorton AL (2010) Hydraulic testing of intravascular axial flow blood pump designs with a protective cage of filaments for mechanical cavopulmonary assist. ASAIO J 56(1):17–23

    Article  Google Scholar 

  10. Chen Z, Jena SK, Giridharan GA, Sobieski MA, Koenig SC, Slaughter MS, Griffith BP, Wu ZJ (2019) Shear stress and blood trauma under constant and pulse-modulated speed CF-VAD operations: CFD analysis of the HVAD. Med Biol Eng Comput 55:167–178

    CAS  Google Scholar 

  11. Su B, Chua LP, Wang X (2011) Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry. Artif Organs 36(4):359–367

    Article  Google Scholar 

  12. Song G, Chua LK, Lim TM (2009) Numerical study of a bio-centrifugal blood pump with straight impeller blade profiles. Artif Organs 34(2):98–104

    Article  Google Scholar 

  13. Nammakie E, Niroomand-Oscuii H, Koochaki M, Ghalichi F (2017) Computational fluid dynamics-based study of possibility of generating pulsatile blood flow via a continuous-flow VAD. Med Biol Eng Comput 55:167–178

    Article  Google Scholar 

  14. Untaroiu A, Throckmorton AL, Patel SM, Wood HG, Allaire PE, Olsen DB (2005) Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance. Artif Organs 29(7):581–591

    Article  Google Scholar 

  15. Zhang Y, Zhan Z, Gui XM, Sun HS, Zhang H, Zheng Z, Zhou JY, Zhu XD, Li GR, Hu SS, Jin DH (2008) Design optimization of an axial blood pump with computational fluid dynamics. ASAIO J 54(2):150–155

    Article  Google Scholar 

  16. Chen Z, Yao Z, Zhu L, Zhang X (2013) Hemolysis analysis of axial blood pumps with various structure impellers. J Mech Med Biol 13(4):1350054

    Article  Google Scholar 

  17. Toptop K, Kadipasaoglu KA (2013) Design and numeric evaluation of a novel axial-flow left ventricular assist device. ASAIO J 59(3):230–239

    Article  Google Scholar 

  18. Peng Y, Wu Y, Tang X, Liu W, Chen D, Gao T, Xu Y, Zeng Y (2014) Numerical simulation and comparative analysis of flow field in axial blood pumps. Comput Methods Biomech Biomed Engin 17(7):723–727

    Article  Google Scholar 

  19. Lanotte L, Mauer J, Mendez S, Fedosov DA, Fromental JM, Claveria V, Nicoud F, Gompper G, Abkarian M (2016) Red cells’ dynamic morphologies govern blood shear thinning under microcirculatory flow conditions. Proc Natl Acad Sci U S A 113:13289–13294

    Article  CAS  Google Scholar 

  20. Fraser KH, Zhang T, Taskin ME, Griffith BP, Wu ZJ (2018) A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. J Biomech Eng 134(8):081002

    Article  Google Scholar 

  21. Yu J, Zhang X (2016) Hydrodynamic and hemolysis analysis on distance and clearance between impeller and diffuser of axial blood pump. J Mech Med Biol 16(1):1650014

    Article  Google Scholar 

  22. Chen Z, Jena SK, Giridharan GA, Koenig SC, Slaughter MS, Griffith BP, Wu Z (2018) Flow features and device-induced blood trauma in CF-VADs under a pulsatile blood flow condition: a CFD comparative study. Int J Numer Meth Biomed Engng 34:e2924

    Article  Google Scholar 

  23. Leverett LB, Hellums JD, Alfrey CP, Lynch EC (1972) Red blood cell damage by shear stress. Biophys J 12(3):257–273

    Article  CAS  Google Scholar 

  24. Demir O, Biyikli E, Lazoglu I, Kucukaksu S (2011) Design of centrifugal blood pump: heart turica centrifugal. Artif Organs 35(7):720–725

    Article  Google Scholar 

  25. Wannawat P, Foojinphan N, Khienwad T, Naiyanetr P (2017) The study of various impeller design for centrifugal blood pump using computer method. In: Proceedings of the IASTED International Conference Biomedical Engineering (Biomed 2017). IEEE, Innsbruck Austria, pp 247–253

    Google Scholar 

  26. Cho YI, Kensey KR (1991) Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology 28(3–4):241–262

    Article  CAS  Google Scholar 

  27. Blackshear PL, Blackshear GL (1987) Mechanical hemolysis. In: Skalak R, Chien S (eds) Handbook of bioengineering. McGraw-Hill, New York, pp 15.1–15.19

    Google Scholar 

  28. Anderson JB, Wood HG, Allaire PE, McDaniel JC, Olsen DB, Bearnson G (2000) Numerical studies of blood shear and washing in a continuous flow ventricular assist device. ASAIO J 46(4):486–494

    Article  CAS  Google Scholar 

  29. Wurzinger LJ, Opitz R, Eckstein H (1986) Mechanical blood trauma: an overview. Angiology 38:81–97

    Google Scholar 

  30. Giersiepen M, Wurzinger LJ, Opitz R, Reul H (1990) Estimation of shear stress-related blood damage in heart valve prostheses in vitro comparison of 25 aortic valves. Int J Artif Organs 13(5):300–306

    Article  CAS  Google Scholar 

  31. Taskin ME, Fraser KH, Zhang T, Gellman B, Fleischli A, Dasse KA, Griffith BP, Wu ZJ (2010) Computational characterization of flow and hemolytic performance of the UltraMag blood pump for circulatory support. Artif Organs 34(12):1099–1113

    Article  Google Scholar 

  32. Faghig MM, Sharp MK (2016) Extending the power-law hemolysis model to complex flows. J Biomech Eng 138(12):124504–124501

    Article  Google Scholar 

  33. American Society for Testing and Materials (1997) Standard practice for assessment of hemolysis in continuous flow blood pumps. Standard F 1841–1897

  34. Ren L, Gu B, Du Y, Wu X, Liu X, Wang H, Jiang L, Guo Y, Wang J (2014) Hemoglobin in normal range, the lower the better? Evidence from a study from Chinese community-dwelling participants. J Thorac Dis 6(5):477–482

    PubMed  PubMed Central  Google Scholar 

  35. Su B, Chua LP, Zhong L (2013) Numerical studies of an axial flow blood pump with different diffuser designs. J Mech Med Biol 13(03):1350029

    Article  Google Scholar 

  36. Shibeshi SS, Collins WE (2005) The rheology of blood flow in a branched arterial system. Appl Rheol 15(6):398–405

    Article  Google Scholar 

  37. Nguyen C (2005) Turbulence Modeling. MIT 1(8):1–6

    Google Scholar 

  38. Sang X, Zhou X (2017) Investigation of hydraulic performance in an axial-flow blood pump with different guide vane outlet angle. Adv Mech Eng 9(8):1–11

    Article  Google Scholar 

  39. Potter PA, Perry AG (2016) Stockert P, Hall A. Fundamental of Nursing, Elsevier Health Sciences

    Google Scholar 

  40. Down LA, Papavassiliou DV, O'Rear EA (2011) Significance of extensional stresses to red blood cell lysis in a shearing flow. Ann Biomed Eng 39:1632

    Article  Google Scholar 

  41. De Wachter DS, Verdonck PR, Verhoeven RF, Hombrouckx RO (1996) Red cell injury assessed in a numerical model of a peripheral dialysis needle. ASAIO J 42:524–529

    Article  Google Scholar 

Download references

Funding

This research work was supported by the Ministry of Human Resource Development (MHRD) and Indian Council of Medical Research (ICMR) under the IMPRINT scheme (award number 3-18/2015-TSI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arup Kumar Das.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannojiya, V., Das, A.K. & Das, P.K. Proposal of hemodynamically improved design of an axial flow blood pump for LVAD. Med Biol Eng Comput 58, 401–418 (2020). https://doi.org/10.1007/s11517-019-02097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-02097-5

Keywords

Navigation