Quantifying the lagged Poincaré plot geometry of ultrashort heart rate variability series: automatic recognition of odor hedonic tone

Abstract

The application of Poincaré plot analysis to characterize inter-beat interval dynamics has been successfully proposed in the scientific literature for the assessment of humans’ physiological states and related aberrations. In this study, we proposed novel descriptors to trace the evolution of Poincaré plot shape over the lags. Their reliability in ultra-short cardiovascular series analysis was validated on synthetic inter-beat series generated through a physiologically plausible integral pulse frequency modulation model. Furthermore, we used the proposed approach for the investigation of the direct relationship between autonomic nervous system (ANS) dynamics and hedonic olfactory elicitation, in a group of 30 healthy subjects. Participants with a similar olfactory threshold were selected, and were asked to score 5-s stimuli in terms of arousal and valence levels according to the Russell’s circumflex model of affect. Their ANS response was investigated in 35-s windows after the elicitation. Experimental results showed a gender-specific, high discriminant power of the proposed approach, discerning between pleasant and unpleasant odorants with an accuracy of 83.33% and 73.33% for men and for women, respectively.

Olfaction plays a crucial role in our life and is strictly related to the Autonomic Nervous System (ANS) activity, which can be monitored studying Heart Rate Variability. We used the Lagged Poincare Plot approach to recognize gender-specific ANS response in 35-second windows after the elicitation through pleasant/unpleasant odorants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Chappell PB, Smith MA, Kilts CD, Bissette G, Ritchie J, Anderson C, Nemeroff CB (1986) Alterations in corticotropin-releasing factor-like immunoreactivity in discrete rat brain regions after acute and chronic stress. J Neurosci 6(10):2908–2914

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Croy I, Symmank A, Schellong J, Hummel C, Gerber J, Joraschky P, Hummel T (2014) Olfaction as a marker for depression in humans. J Affect Disord 160(2014):80–86

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Lombion-Pouthier S, Vandel P, Nezelof S, Haffen E, Millot J-L (2006) Odor perception in patients with mood disorders. J Affect Disord 90(2-3):187–191

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Burón E, Bulbena A, Bulbena-Cabré A (2015) Olfactory functioning in panic disorder. J Affect Disord 175(2015):292–298

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Oral E, Aydin M, Aydin N, Ozcan H, Hacimuftuoglu A, Sipal S, Demirci E (2013) How olfaction disorders can cause depression? The role of habenular degeneration. Neuroscience 240(2013):63–69

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Schiffman SS (1974) Physicochemical correlates of olfactory quality. Science (1974): 112–117

  7. 7.

    Igarashi M, Song C, Ikei H, Ohira T, Miyazaki Y (2014) Effect of olfactory stimulation by fresh rose flowers on autonomic nervous activity. J Alter Complement Med 20(9):727–731

    Article  Google Scholar 

  8. 8.

    Bensafi M, Rouby C, Farget V, Bertrand B, Vigouroux M, Holley A (2002) Autonomic nervous system responses to odours: the role of pleasantness and arousal. Chem Senses 27(8):703–709

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Greco A, Nardelli M, Lanata A, Morelli M, Francesco FD, Scilingo E, Barbieri R, Valenza G (2017) Instantaneous assessment of hedonic olfactory perception using heartbeat nonlinear dynamics: a preliminary study. In: Computing in cardiology, 2017

  10. 10.

    Appelhans BM, Luecken LJ (2006) Heart rate variability as an index of regulated emotional responding. Rev Gen Psychol 10(3):229

    Article  Google Scholar 

  11. 11.

    Thayer JF, Hansen AL, Saus-Rose E, Johnsen BH (2009) Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Annals Behav Med 37(2):141–153

    Article  Google Scholar 

  12. 12.

    Lane R, McRae K, Reiman E, Chen K, Ahern G, Thayer JF (2009) Neural correlates of heart rate variability during emotion. Neuroimage 44(1):213–222

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Lane R, Reiman E, Ahern G, Thayer J (2001) 21. Activity in medial prefrontal cortex correlates with vagal component of heart rate variability during emotion. Brain Cogn 47(1-2):97–100

    Google Scholar 

  14. 14.

    Leistedt SJ, Linkowski P, Lanquart JP, Mietus J, Davis RB, Goldberger AL, Costa MD (2011) Decreased neuroautonomic complexity in men during an acute major depressive episode: analysis of heart rate dynamics. Translational Psychiatry 1(7):e27

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Valenza G, Nardelli M, Lanata A, Gentili C, Bertschy G, Kosel M, Scilingo E (2016) Predicting mood changes in bipolar disorder through heartbeat nonlinear dynamics. IEEE J Biomed Health Inform 20(4):1034–1043

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Valenza G, Nardelli M, Bertschy G, Lanata A, Scilingo E (2014) Mood states modulate complexity in heartbeat dynamics: a multiscale entropy analysis. EPL (Europhysics Letters) 107(1):18003

    Article  CAS  Google Scholar 

  17. 17.

    Nardelli M, Scilingo E, Valenza G (2019) Multichannel complexity index (MCI) for a multi-organ physiological complexity assessment, Physica A: Statistical Mechanics and its Applications: 121543

  18. 18.

    Valenza G, Lanata A, Scilingo E (2012) The role of nonlinear dynamics in affective valence and arousal recognition. IEEE Trans Affect Comput 3(2):237–249

    Article  Google Scholar 

  19. 19.

    Valenza G, Lanata A, Scilingo E (2012) Oscillations of heart rate and respiration synchronize during affective visual stimulation. IEEE Trans Inform Technol Biomed 16(4):683–690

    Article  Google Scholar 

  20. 20.

    Palomba D, Sarlo M, Angrilli A, Mini A, Stegagno L (2000) Cardiac responses associated with affective processing of unpleasant film stimuli. Int J Psychophysiology 36(1):45–57

    CAS  Article  Google Scholar 

  21. 21.

    Wiens S, Mezzacappa ES, Katkin ES (2000) Heartbeat detection and the experience of emotions. Cogn Emotion 14(3):417– 427

    Article  Google Scholar 

  22. 22.

    Nardelli M, Valenza G, Greco A, Lanata A, Scilingo E (2015) Recognizing emotions induced by affective sounds through heart rate variability. IEEE Trans Affect Comput 6(4):385–394

    Article  Google Scholar 

  23. 23.

    Orini M, Bailón R, Enk R, Koelsch S, Mainardi L, Laguna P (2010) A method for continuously assessing the autonomic response to music-induced emotions through hrv analysis. Med Biol Eng Comput 48 (5):423–433

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Nardelli M, Greco A, Bianchi M, Scilingo E, Valenza G (2018) Classifying affective haptic stimuli through gender-specific heart rate variability nonlinear analysis. IEEE Transactions on Affective Computing

  25. 25.

    Nardelli M, Valenza G, Bianchi M, Greco A, Lanata A, Bicchi A, Scilingo E (2015) Gender-specific velocity recognition of caress-like stimuli through nonlinear analysis of heart rate variability. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, 2015, pp 298–301

  26. 26.

    Takens F (1981) Detecting strange attractors in turbulence. In: Dynamical systems and turbulence, Warwick 1980, Springer, 1981, pp 366–381

  27. 27.

    Woo MA, Stevenson WG, Moser DK, Trelease RB, Harper RM (1992) Patterns of beat-to-beat heart rate variability in advanced heart failure. American Heart Journal 123(3):704–710

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Woo MA, Stevenson WG, Moser DK, Middlekauff HR (1994) Complex heart rate variability and serum norepinephrine levels in patients with advanced heart failure. Journal of the American College of Cardiology 23(3):565–569

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Hayano J, Takahashi H, Toriyama T, Mukai S, Okada A, Sakata S, Yamada A, Ohte N, Kawahara H (1999) Prognostic value of heart rate variability during long-term follow-up in chronic haemodialysis patients with end-stage renal disease. Nephrology Dialysis Transplantation 14(6):1480–1488

    CAS  Article  Google Scholar 

  30. 30.

    Tulppo MP, Makikallio T, Takala T, Seppanen T, Huikuri HV (1996) Quantitative beat-to-beat analysis of heart rate dynamics during exercise. American Journal of Physiology-Heart and Circulatory Physiology 271(1):H244–H252

    CAS  Article  Google Scholar 

  31. 31.

    Nardelli M, Greco A, Bolea J, Valenza G, Scilingo E, Bailon R (2017) Reliability of lagged poincaré plot parameters in ultra-short heart rate variability series: application on affective sounds. IEEE Journal of Biomedical and Health Informatics

  32. 32.

    Brennan M, Palaniswami M, Kamen P (2001) Do existing measures of poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng 48(11):1342–1347

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Lerma C, Infante O, Pérez-Grovas H, José MV (2003) Poincaré plot indexes of heart rate variability capture dynamic adaptations after haemodialysis in chronic renal failure patients. Clinical Physiology and Functional Imaging 23(2):72–80

    PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Koichubekov B, Riklefs V, Sorokina M, Korshukov I, Turgunova L, Laryushina Y, Bakirova R, Muldaeva G, Bekov E, Kultenova M (2017) Informative nature and nonlinearity of lagged poincaré plots indices in analysis of heart rate variability. Entropy 19(10):523

    Article  Google Scholar 

  35. 35.

    Nardelli M, Greco A, Bolea J, Valenza G, Scilingo E, Bailón R (2017) Investigation of lagged poincaré plot reliability in ultra-short synthetic and experimental heart rate variability series. In: 2017 IEEE 39th annual international conference of the engineering in medicine and biology society (EMBC). IEEE, 2017

  36. 36.

    Khandoker A, Karmakar C, Brennan M, Palaniswami M, Voss A (2013) Poincaré plot methods for heart rate variability analysis. Springer, 2013

  37. 37.

    Seeck A, Baumert M, Fischer C, Khandoker A, Faber R, Voss A (2011) Advanced poincaré plot analysis differentiates between hypertensive pregnancy disorders. Physiological Measurement 32(10):1611

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Voss A, Fischer C, Schroeder R, Figulla H, Goernig M, et al. (2010) Segmented poincare plot analysis for risk stratification in patients with dilated cardiomyopathy. Methods of Information in Medicine 49(5):511–515

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Voss A, Fischer C, Schroeder R, Figulla HR, Goernig M (2012) Lagged segmented poincaré plot analysis for risk stratification in patients with dilated cardiomyopathy. Med Biol Eng Comput 50(7):727–736

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Nardelli M, Greco A, Valenza G, Lanata A, Bailón R, Scilingo E (2017) A novel heart rate variability analysis using lagged poincaré plot: A study on hedonic visual elicitation. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, 2017, pp 2300– 2303

  41. 41.

    Nardelli M, Greco A, Danzi O, Perlini C, Tedeschi F, Scilingo E, Del Piccolo L, Valenza G (2019) Cardiovascular assessment of supportive doctor-patient communication using multi-scale and multi-lag analysis of heartbeat dynamics. Med Biol Eng Comput 57(1):123–134

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Yousem DM, Maldjian JA, Siddiqi F, Hummel T, Alsop DC, Geckle RJ, Bilker WB, Doty RL (1999) Gender effects on odor-stimulated functional magnetic resonance imaging. Brain Res 818(2):480–487

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Guzik P, Piskorski J, Krauze T, Schneider R, Wesseling KH, Wykretowicz A, Wysocki H (2007) Correlations between the poincare plot and conventional heart rate variability parameters assessed during paced breathing. J Physiological Sci 57(1):63–71

    Article  Google Scholar 

  44. 44.

    Piskorski J, Guzik P (2005) Filtering poincare plots. Comput Methods Sci Technol 11(1):39–48

    Article  Google Scholar 

  45. 45.

    Mateo J, Laguna P (2000) Improved heart rate variability signal analysis from the beat occurrence times according to the ipfm model. IEEE Trans Biomed Eng 47(8):985–996

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Orini M, Bailón R, Mainardi L, Laguna P (2012) Synthesis of hrv signals characterized by predetermined time-frequency structure by means of time-varying arma models. Biomed Signal Process Control 7(2):141–150

    Article  Google Scholar 

  47. 47.

    Schäfer D, Nil M, Herzig D, Eser P, Saner H, Wilhelm M (2015) Good reproducibility of heart rate variability after orthostatic challenge in patients with a history of acute coronary syndrome. J Electrocardiology 48(4):696–702

    Article  Google Scholar 

  48. 48.

    Guzzetti S, La Rovere MT, Pinna GD, Maestri R, Borroni E, Porta A, Mortara A, Malliani A (2005) Different spectral components of 24 h heart rate variability are related to different modes of death in chronic heart failure. European Heart Journal 26(4):357–362

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Naudin M, El-Hage W, Gomes M, Gaillard P, Belzung C, Atanasova B (2012) State and trait olfactory markers of major depression. PLoS One 7(10):e46938

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Greco A, Lanata A, Valenza G, Di Francesco F, Scilingo E (2016) Gender-specific automatic valence recognition of affective olfactory stimulation through the analysis of the electrodermal activity. In: 2016 IEEE 38th annual international conference of the engineering in medicine and biology society (EMBC). IEEE, 2016, pp 399–402

  51. 51.

    Russell JA (1980) A circumplex model of affect. Journal of Personality and Social Psychology 39(6):1161

    Article  Google Scholar 

  52. 52.

    Bradley MM, Lang PJ (1994) Measuring emotion: the self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry 25(1):49–59

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Pan J, Tompkins WJ (1985) A real-time qrs detection algorithm. IEEE Transactions on Biomedical Engineering (3):230–236

  54. 54.

    Tarvainen MP, Niskanen J-P, Lipponen JA, Ranta-Aho PO, Karjalainen PA (2014) Kubios hrv–heart rate variability analysis software. Computer Methods and Programs in Biomedicine 113(1):210–220

    PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Mateo J, Laguna P (2003) Analysis of heart rate variability in the presence of ectopic beats using the heart timing signal. IEEE Transactions on Biomedical Engineering 50(3):334–343

    PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Duda RO, Hart PE, Stork DG (2012) Pattern classification. Wiley, New York, p 2012

    Google Scholar 

  57. 57.

    Esterman M, Tamber-Rosenau BJ, Chiu Y-C, Yantis S (2010) Avoiding non-independence in fmri data analysis: leave one subject out. Neuroimage 50(2):572–576

    PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Yan K, Zhang D (2015) Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sensors Actuators B Chem 212(2015):353–363

    CAS  Article  Google Scholar 

  59. 59.

    Nardelli M, Valenza G, Cristea IA, Gentili C, Cotet C, David D, Lanata A, Scilingo E (2015) Characterizing psychological dimensions in non-pathological subjects through autonomic nervous system dynamics. Frontiers in Computational Neuroscience 9

  60. 60.

    McNames J, Aboy M (2006) Reliability and accuracy of heart rate variability metrics versus ecg segment duration. Medical and Biological Engineering and Computing 44(9):747–756

    PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Nardelli M, Greco A, Bolea J, Valenza G, Scilingo E, Bailón R (2018) Reliability of lagged poincaré plot parameters in ultrashort heart rate variability series: application on affective sounds. IEEE Journal of Biomedical and Health Informatics 22(3):741–749

    PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Alaoui-Ismaili O, Vernet-Maury E, Dittmar A, Delhomme G, Chanel J (1997) Odor hedonics: connection with emotional response estimated by autonomic parameters. Chemical Senses 22(3):237–248

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Bensafi M, Sobel N, Khan RM (2007) Hedonic-specific activity in piriform cortex during odor imagery mimics that during odor perception. Journal of Neurophysiology 98(6):3254–3262

    PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Thuerauf N, Gossler A, Lunkenheimer J, Lunkenheimer B, Maihöfner C, Bleich S, Kornhuber J, Markovic K, Reulbach U (2008) Olfactory lateralization: odor intensity but not the hedonic estimation is lateralized. Neurosci Lett 438(2):228–232

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Cain D, Bindra D (1972) Responses of amygdala single units to odors in the rat. Experimental Neurology 35(1):98–110

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Zald DH, Pardo JV (1997) Emotion, olfaction, and the human amygdala: amygdala activation during aversive olfactory stimulation. Proceedings of the National Academy of Sciences 94(8):4119–4124

    CAS  Article  Google Scholar 

  67. 67.

    Plum F (1960) Handbook of physiology. AMA Archives of Neurology 2(3):360–360

    Article  Google Scholar 

  68. 68.

    Van Toller S (1988) Emotion and the brain. In: Perfumery, Springer, 1988, pp 121–143

  69. 69.

    McCraty R, Atkinson M, Tiller WA, Rein G, Watkins AD (1995) The effects of emotions on short-term power spectrum analysis of heart rate variability. The American Journal of Cardiology 76(14):1089–1093

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Wysocki CJ, Gilbert AN (1989) National geographic smell survey: effects of age are heterogenous. Annals of the New York Academy of Sciences 561(1):12–28

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Dijksterhuis GB, Møller P, Bredie WL, Rasmussen G, Martens M (2002) Gender and handedness effects on hedonicity of laterally presented odours. Brain Cogn 50(2):272–281

    PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Thuerauf N, Reulbach U, Lunkenheimer J, Lunkenheimer B, Spannenberger R, Gossler A, Maihöfner C, Bleich S, Kornhuber J, Markovic K (2009) Emotional reactivity to odors: olfactory sensitivity and the span of emotional evaluation separate the genders. Neurosci Lett 456(2):74–79

    CAS  Article  Google Scholar 

  73. 73.

    Tarvainen MP, Ranta-Aho PO, Karjalainen PA (2002) An advanced detrending method with application to hrv analysis. IEEE Trans Biomed Eng 49(2):172–175

    PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Julian LJ (2011) Measures of anxiety: state-trait anxiety inventory (stai), beck anxiety inventory (bai), and hospital anxiety and depression scale-anxiety (hads-a). Arthritis Care & Research 63(S11):S467–S472

    Article  Google Scholar 

  75. 75.

    Watson D, Clark LA, Tellegen A (1988) Development and validation of brief measures of positive and negative affect: the panas scales. Journal of Personality and Social Psychology 54(6):1063

    CAS  Article  Google Scholar 

  76. 76.

    Carrasco RGOYS, Gaitán M J (2001) Correlation among poincare plot indexes and time and frequency domain measures of heart rate variability. J Med Eng Technol 25(6):240–248

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work partially supported by the Italian Ministry of Education and Research (MIUR) in the framework of the CrossLab project (Departments of Excellence).

Funding

Research partly supported by AEI and FEDER under the projects RTI2018-097723-B-I00, by CIBER de Bioingenieria, Biomateriales y Nanomedicina through Instituto de Salud Carlos III, by LMP44-18 and BSICoS group (T39-17R) funded by Gobierno de Aragón.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Nardelli.

Ethics declarations

This study was approved by the Ethical Committee of the University of Pisa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nardelli, M., Valenza, G., Greco, A. et al. Quantifying the lagged Poincaré plot geometry of ultrashort heart rate variability series: automatic recognition of odor hedonic tone. Med Biol Eng Comput 58, 1099–1112 (2020). https://doi.org/10.1007/s11517-019-02095-7

Download citation

Keywords

  • Lagged poincaré plot
  • Pattern recognition
  • Support vector machine
  • Affective computing
  • Olfactory elicitation