Skip to main content

Advertisement

Log in

GSIAR: gene-subcategory interaction-based improved deep representation learning for breast cancer subcategorical analysis using gene expression, applicable for precision medicine

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Tumor subclass detection and diagnosis is inevitable requirement for personalized medical treatment and refinement of the effects that the somatic cells show towards other clinical conditions. The genome of these somatic cells exhibits mutations and genetic variations of the breast cancer cells and helps in understanding the characteristic behavior of the cancer cells. But their analysis is limited to clustering and there is requirement to analyze what else can be done with the data for identifying the tumor subcategory and the stages of subclasses. In this work, we have extended the work with similar data (consisting of 105 breast tumor cell lines) to solve other detection and characterization problems through computation and intelligent representation learning. Most of our work comprises of systematic data cleaning, analysis, and building prediction models with deep computational architectures and establish that the transformed data can help in better distinction of the respective categories. Our main contribution is the novel gene-subcategory interaction-based regularization (GSIAR) based data selection and analysis concept, alongside the prediction, proven to enhance the performance of the classification techniques.

A graphical abstract of our model - Gene-subcategory interaction affinity-based regularization (GSIAR)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534(7605):55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tyrer J, Stephen WD, Jack C (2004) A breast cancer prediction model incorporating familial and personal risk factors. Stat Med 23(7):1111–1130

    Article  PubMed  Google Scholar 

  3. Baker JA, et al. (1995) Breast cancer: prediction with artificial neural network based on BI-RADS standardized lexicon. Radiology 196(3):817–822

    Article  CAS  PubMed  Google Scholar 

  4. Lakhani SR, et al. (2005) Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11(14):5175–5180

    Article  CAS  PubMed  Google Scholar 

  5. Chang JC, et al. (2003) Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. The Lancet 362(9381):362–369

    Article  CAS  Google Scholar 

  6. Iorio MV, et al. (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65 (16):7065–7070

    Article  CAS  PubMed  Google Scholar 

  7. Bardou V, et al. (2003) Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J Clin Oncol 21 (10):1973–1979

    Article  CAS  PubMed  Google Scholar 

  8. Parker J, et al. (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dowsett M, et al. (2010) Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol 28(11):1829–1834

    Article  PubMed  Google Scholar 

  10. Gruvberger S, et al. (2001) Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 61(16):5979–5984

    CAS  PubMed  Google Scholar 

  11. Reis-Filho J, Lajos P (2011) Gene expression profiling in breast cancer: classification, prognostication, and prediction. The Lancet 378(9805):1812–1823

    Article  CAS  Google Scholar 

  12. Mangasarian O, Street W, Wolberg W (1995) Breast cancer diagnosis and prognosis via linear programming. Oper Res 43(4):570–577

    Article  Google Scholar 

  13. West M, et al. (2001) Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci 98(20):11462–11467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wooster R, et al. (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 6559(789):378

    Google Scholar 

  15. Van V, Marc J, et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009

    Article  Google Scholar 

  16. Minn A, et al. (2005) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paik S, et al. (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor–positive breast cancer. J Clin Oncol 24(23):3726–3734

    Article  CAS  PubMed  Google Scholar 

  18. Huang E, et al. (2003) Gene expression predictors of breast cancer outcomes. The Lancet 361(9369):1590–1596

    Article  CAS  Google Scholar 

  19. Weigelt B, Frederick B, Jorge R (2010) The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol 220(2):263–280

    Article  CAS  PubMed  Google Scholar 

  20. Weigelt B, et al. (2008) Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol 21(2):141–150

    Article  CAS  Google Scholar 

  21. Sotiriou C, et al. (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci 100(18):10393–10398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Axelsson C, et al. (1992) Axillary dissection of level I and II lymph nodes is important in breast cancer classification. Eur J Cancer 28(8-9):1415–1418

    Article  Google Scholar 

  23. Chuang H, et al. (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 1(140):3

    Google Scholar 

  24. Brenton J, et al. (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application?. J Clin Oncol 23(29):7350–7360

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, et al. (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. The Lancet 365(9460):671–679

    Article  CAS  Google Scholar 

  26. Viale G (2012) The current state of breast cancer classification. Ann Oncol 23(suppl_10):207–210

    Article  Google Scholar 

  27. Colombo P, et al. (2011) Microarrays in the 2010s: the contribution of microarray-based gene expression profiling to breast cancer classification, prognostication and prediction. Breast Cancer Res 3(212):13

    Google Scholar 

  28. Rakha A, et al. (2010) Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res 4(207):12

    Google Scholar 

  29. Tan A, Gilbert D (2003) Ensemble machine learning on gene expression data for cancer classification

  30. Guyon I, et al. (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1):389–422

    Article  Google Scholar 

  31. Akay M (2009) Support vector machines combined with feature selection for breast cancer diagnosis. Expert systems with applications 36(2):3240–3247

    Article  Google Scholar 

  32. Polat K, Gunes S (2007) Breast cancer diagnosis using least square support vector machine. Digital Signal Process 17(4):694–701

    Article  Google Scholar 

  33. Statnikov A, Wang L, Constantin A (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinf 9(1):319

    Article  CAS  Google Scholar 

  34. Cruz A, David W (2006) Applications of machine learning in cancer prediction and prognosis. Cancer Informat 2:59

    Article  Google Scholar 

  35. Xin J et al (2006) Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles. International Workshop on Data Mining for Biomedical Applications

  36. Wolberg W, Street W, Mangasarian O (1995) Image analysis and machine learning applied to breast cancer diagnosis and prognosis. Anal Quant Cytol Histol 17(2):77–87

    CAS  PubMed  Google Scholar 

  37. Wei L, et al. (2005) A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications. IEEE Trans Med Imaging 24(3):371–380

    Article  PubMed  Google Scholar 

  38. Murphy K (2006) Naive bayes classifiers. University of British Columbia

  39. Scott M (2002) Applied logistic regression analysis. Vol. 106. Sage

  40. Liaw A, Wiener M (2002) Classification and regression by random forest. R news 2(3):18–22

    Google Scholar 

  41. Suykens J, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9 (3):293–300

    Article  Google Scholar 

  42. http://www.breastcancer.org/symptoms/understand_bc/statistics

  43. Ross E, et al. (2019) Online accounts of gene expression profiling in early-stage breast cancer: interpreting genomic testing for chemotherapy decision making. Health Expect 22(1):74–82

    Article  PubMed  Google Scholar 

  44. Srour MK et al (2019) Gene expression comparison between primary triple-negative breast cancer and matched axillary lymph node metastasis: 565-565

  45. Nakshatri Harikrishna, et al. (2019) Genetic ancestry–dependent differences in breast cancer–induced field defects in the tumor-adjacent normal breast. Clin Cancer Res 25(9):2848–2859

    Article  PubMed  CAS  Google Scholar 

  46. Savci-Heijink CD, et al. (2019) A specific gene expression signature for visceral organ metastasis in breast cancer. BMC Cancer 19(1):333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ishay-Ronen D, et al. (2019) Gain fat—lose metastasis: converting invasive breast cancer cells into adipocytes inhibits cancer metastasis. Cancer Cell 35(1):17–32

    Article  CAS  PubMed  Google Scholar 

  48. Mechera R, et al. (2019) Expression of RET is associated with Oestrogen receptor expression but lacks prognostic significance in breast cancer. BMC Cancer 19(1):41

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liedtke C, Pusztai L (2019) Gene expression profiling as an emerging diagnostic tool to personalize chemotherapy selection for early stage breast cancer. Pharmacogenetics of Breast Cancer. CRC Press, pp 87–106

  50. Paroni G, et al. (2675) HER2-positive breast-cancer cell lines are sensitive to KDM5 inhibition: definition of a gene-expression model for the selection of sensitive cases. Oncogene 15(2019):38

    Google Scholar 

  51. Chang JC, Hilsenbeck SG, Fuqua AW (2019) Pharmacogenetics of breast cancer: toward the individualization of therapy. Pharmacogenetics of Breast Cancer. CRC Press, pp 15–23

  52. Dworkin AM, Huang TH-M, Toland AE (2019) The role of epigenetics in breast cancer: implications for diagnosis, prognosis, and treatment. Pharmacogenetics of breast cancer. CRC Press, pp 57–71

  53. Asano Yuka, et al. (2018) Expression and clinical significance of androgen receptor in triple-negative breast cancer. AR Signaling in Human Malignancies: Prostate Cancer and Beyond, pp 197

  54. Franco HL, et al. (2018) Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis. Genome Res 28(2):159–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gyorffy B, et al. (1107) An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes. Br J Cancer 118(8):2018

    Google Scholar 

  56. Kwa M, Makris A, Esteva FJ (2017) Clinical utility of gene-expression signatures in early stage breast cancer. Nat Rev Clin Oncol 14(10):595

    Article  CAS  PubMed  Google Scholar 

  57. Cejalvo JM, et al. (2017) Intrinsic subtypes and gene expression profiles in primary and metastatic breast cancer. Cancer Res 77(9):2213–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ramanathan R, et al. (2017) Angiopoietin pathway gene expression associated with poor breast cancer survival. Breast Cancer Res Treat 162(1):191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bozovic-Spasojevic I, et al. (2017) The prognostic role of androgen receptor in patients with early-stage breast cancer: a meta-analysis of clinical and gene expression data. Clin Cancer Res 23(11):2702–2712

    Article  CAS  PubMed  Google Scholar 

  60. Casciello F, et al. (2017) G9a drives hypoxia-mediated gene repression for breast cancer cell survival and tumorigenesis. Proc Natl Acad Sci 114(27):7077–7082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Denkert C, et al. (2017) Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. The Lancet 389(10087):2430–2442

    Article  CAS  Google Scholar 

  62. Dai X, et al. (2017) Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer 8(16):3131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiranjib Sur.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sur, C. GSIAR: gene-subcategory interaction-based improved deep representation learning for breast cancer subcategorical analysis using gene expression, applicable for precision medicine. Med Biol Eng Comput 57, 2483–2515 (2019). https://doi.org/10.1007/s11517-019-02038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-02038-2

Keywords

Navigation