Aortic root sizing for transcatheter aortic valve implantation using a shape model parameterisation

Abstract

During a transcatheter aortic valve implantation, an axisymmetric implant is placed in an irregularly shaped aortic root. Implanting an incorrect size can cause complications such as leakage of blood alongside or through the implant. The aim of this study was to construct a method that determines the optimal size of the implant based on the three-dimensional shape of the aortic root. Based on the pre-interventional computed tomography scan of 89 patients, a statistical shape model of their aortic root was constructed. The weights associated with the principal components and the volume of calcification in the aortic valve were used as parameters in a classification algorithm. The classification algorithm was trained using the patients with no or mild leakage after their intervention. Subsequently, the algorithms were applied to the patients with moderate to severe leakage. Cross validation showed that a random forest classifier assigned the same size in 65 ± 7% of the training cases, while 57 ± 8% of the patients with moderate to severe leakage were assigned a different size. This initial study showed that this semi-automatic method has the potential to correctly assign an implant size. Further research is required to assess whether the different size implants would improve the outcome of those patients.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Alizadeh Sani Z, Shalbaf A, Behnam H, Shalbaf R (2015) Automatic computation of left ventricular volume changes over a cardiac cycle from echocardiography images by nonlinear dimensionality reduction. J Digit Imaging 28(1):91–98

    Article  Google Scholar 

  2. 2.

    Allen J, Zacur E, Dall’Armellina E, Lamata P, Grau V (2016) Myocardial infarction detection from left ventricular shapes using a random forest. Springer International Publishing, Berlin, pp 180–189

    Google Scholar 

  3. 3.

    Blanke P, Schoepf UJ, Leipsic JA (2013) Ct in transcatheter aortic valve replacement. Radiology 269 (3):650–669

    Article  Google Scholar 

  4. 4.

    Bose AK, Aitchison JD, Dark JH (2007) Aortic valve replacement in octogenarians. J Cardiothorac Surg 2:33–5

    Article  Google Scholar 

  5. 5.

    Bosmans B, Collas V, Verhoelst E, Paelinck B, Vander Sloten J, Bosmans J (2016) Morphological characteristics and calcification of the native aortic valve and the relation to significant aortic regurgitation post CoreValve TAVI. Journal of Heart Valve Disease

  6. 6.

    Bosmans B, Famaey N, Verhoelst E, Bosmans J, Vander Sloten J (2016) A validated methodology for patient specific computational modelling of self-expandable transcatheter aortic valve implantation. J Biomech 49(13):2824–2830

    Article  Google Scholar 

  7. 7.

    Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26(9):1124–37

    Article  Google Scholar 

  8. 8.

    den Broeck JV, Vereecke E, Wirix-Speetjens R, Sloten JV (2014) Segmentation accuracy of long bones. Med Eng Phys 36(7):949–953

    Article  Google Scholar 

  9. 9.

    Bruse JL, Mcleod K, Biglino G, Ntsinjana HN, Capelli C, Hsia TY, Sermesant M, Pennec X, Taylor AM, Schievano S, Hearts C (2016) A statistical shape modelling framework to extract 3D shape biomarkers from medical imaging data : assessing arch morphology of repaired coarctation of the aorta. BMC Med Imaging 16(1):40

    Article  Google Scholar 

  10. 10.

    Buzzatti N, Maisano F, Latib A, Cioni M, Taramasso M, Mussardo M, Colombo A, Alfieri O (2013) Computed tomography-based evaluation of aortic annulus, prosthesis size and impact on early residual aortic regurgitation after transcatheter aortic valve implantation. European Journal of Cardio-thoracic Surgery : Official Journal of the European Association for Cardio-thoracic Surgery 43(1):43–51

    Article  Google Scholar 

  11. 11.

    Cootes TF, Hill A, Taylor CJ, Hastam J (1994) Use of active shape models for locating structures in medical images. Image Vis Comput 12(6):355–365

    Article  Google Scholar 

  12. 12.

    Davies RH, Twining CJ, Cootes TF, Waterton JC, Taylor CJ (2002) A minimum description length approach to statistical shape modeling. IEEE Trans Med Imaging 21(5):525–537

    Article  Google Scholar 

  13. 13.

    Détaint D, Lepage L, Himbert D, Brochet E, Messika-Zeitoun D, Iung B, Vahanian A (2009) Determinants of significant paravalvular regurgitation after transcatheter aortic valve: implantation impact of device and annulus discongruence. JACC. Cardiovascular Interventions 2(9):821–7

    Article  Google Scholar 

  14. 14.

    Ferrarini L, Palm WM, Olofsen H, Van Der Landen R, Van Buchem MA, Reiber JHC, Admiraal-behloul F (2008) Ventricular shape biomarkers for Alzheimer’s disease in clinical MR images. Magn Reson Med 59(2):260–267

    Article  Google Scholar 

  15. 15.

    Hayashida K, Bouvier E, Lefévre T, Hovasse T, Morice MC, Chevalier B, Romano M, Garot P, Mylotte D, Farge A, Donzeau-Gouge P, Cormier B (2012) Impact of CT-guided valve sizing on post-procedural aortic regurgitation in transcatheter aortic valve implantation. EuroIntervention : Journal of EuroPCR in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 8 (5):546–55

    Article  Google Scholar 

  16. 16.

    Holmes DR, Mack MJ, Kaul S, Agnihotri A, Alexander KP, Bailey SR, Calhoon JH, Carabello BA, Desai MY, Edwards FH, Francis GS, Gardner TJ, Kappetein AP, Linderbaum JA, Mukherjee C, Mukherjee D, Otto CM, Ruiz CE, Sacco RL, Smith D, Thomas JD (2012) 2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement. J Am Coll Cardiol 59(13):1200–1254

    Article  Google Scholar 

  17. 17.

    Hoogendoorn C, Duchateau N, Sanchez-Quintana D, Whitmarsh T, Sukno FM, Craene MD, Lekadir K, Frangi AF (2013) A high-resolution atlas and statistical model of the human heart from multislice ct. IEEE Trans Med Imaging 32(1):28–44

    Article  Google Scholar 

  18. 18.

    Huysmans T, Sijbers J, Verdonk B (2010) Automatic construction of correspondences for tubular surfaces. IEEE Trans Pattern Anal Mach Intell 32(4):636–51

    Article  Google Scholar 

  19. 19.

    Jilaihawi H, Kashif M, Fontana G, Furugen A, Shiota T, Friede G, Makhija R, Doctor N, Leon MB, Makkar RR (2012) Cross-sectional computed tomographic assessment improves accuracy of aortic annular sizing for transcatheter aortic valve replacement and reduces the incidence of paravalvular aortic regurgitation. J Am Coll Cardiol 59(14):1275–1286

    Article  Google Scholar 

  20. 20.

    Kodali SK, Williams MR, Smith CR, Svensson LG, Webb JG, Makkar RR, Fontana GP, Dewey TM, Thourani VH, Pichard AD, Fischbein M, Szeto WY, Lim S, Greason KL, Teirstein PS, Malaisrie SC, Douglas PS, Hahn RT, Whisenant B, Zajarias A, Wang D, Akin JJ, Anderson WN, Leon MB (2012) Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med 366 (18):1686–95

    CAS  Article  Google Scholar 

  21. 21.

    Lacko D, Huysmans T, Parizel PM, De Bruyne G, Verwulgen S, Van Hulle MM, Sijbers J (2015) Evaluation of an anthropometric shape model of the human scalp. Appl Ergon 48:70–85

    Article  Google Scholar 

  22. 22.

    Lekadir K, Albà X, Pereañez M, Frangi AF (2016) Statistical shape modeling using partial least squares: application to the assessment of myocardial infarction. Springer International Publishing, Berlin, pp 130–139

    Google Scholar 

  23. 23.

    Lorenz C, von Berg J (2006) A comprehensive shape model of the heart. Med Image Anal 10(4):657–70

    Article  Google Scholar 

  24. 24.

    Ltjnen J, Kivist S, Koikkalainen J, Smutek D, Lauerma K (2004) Statistical shape model of atria, ventricles and epicardium from short- and long-axis {MR} images. Med Image Anal 8(3):371–386. Medical Image Computing and Computer-Assisted Intervention - {MICCAI} 2003

    Article  Google Scholar 

  25. 25.

    Magnenat-thalmann N, Seo H, Cordier F (2004) Automatic modeling of virtual humans and body clothing. J Comput Sci Technol 19(5):575–584

    Article  Google Scholar 

  26. 26.

    Paulsen RR, Larsen R, Nielsen C, Laugesen S, Ersbøll B (2002) Building and testing a statistical shape model of the human ear canal. Medical Image Computing and Computer-Assisted Intervention 2489:373–380

    Google Scholar 

  27. 27.

    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  28. 28.

    Pinto C, Çimen S, Gooya A, Lekadir K, Frangi AF (2016) Joint clustering and component analysis of spatio-temporal shape patterns in myocardial infarction. Springer International Publishing, Berlin, pp 171–179

    Google Scholar 

  29. 29.

    Ren Y, Wang L, Gao Y, Tang Z, Chen KC, Li J, Shen SGF, Yan J, Lee PKM, Chow B, Xia JJ, Shen D (2014) Estimating anatomically-correct reference model for craniomaxillofacial deformity via sparse representation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8674 LNCS(PART 2):73–80

    Google Scholar 

  30. 30.

    Schultz CJ, Moelker A, Piazza N, Tzikas A, Otten A, Nuis RJ, Neefjes LA, Van Geuns RJ, De Feyter P, Krestin G, Serruys PW, De Jaegere PPT (2010) Three dimensional evaluation of the aortic annulus using multislice computer tomography: are manufacturer’s guidelines for sizing for percutaneous aortic valve replacement helpful?. Eur Heart J 31(7):849–856

    Article  Google Scholar 

  31. 31.

    Sellers R, Levy M, Amplatz K, Lillehei CW (1964) Left retrograde cardioangiography in acquired cardiac disease: technique, indications and interpretations in 700 Cases. Am J Cardiol 14(October):437–447

    CAS  Article  Google Scholar 

  32. 32.

    Styner MA, Rajamani KT, Nolte LP, Zsemlye G, Székely G, Taylor CJ, Davies RH (2003) Evaluation of 3D correspondence methods for model building. Proc Information Processing in Medical Imaging 18:63–75

    Article  Google Scholar 

  33. 33.

    Thorstensen N, tyngier P, Sgonne F, Keriven R (2011) Diffusion maps as a framework for shape modeling. Comput Vis Image Underst 115(4):520–530

    Article  Google Scholar 

  34. 34.

    Thourani VH, Ailawadi G, Szeto WY, Dewey TM, Guyton RA, Mack MJ, Kron IL, Kilgo P, Bavaria JE (2011) Outcomes of surgical aortic valve replacement in high-risk patients: a multiinstitutional study. Ann Thorac Surg 91(1):49–56

    Article  Google Scholar 

  35. 35.

    Wang Y, Yuan L, Shi J, Greve A, Ye J, Toga AW, Reiss AL, Thompson PM (2013) Applying tensor-based morphometry to parametric surfaces can improve MRI-based disease diagnosis. NeuroImage 74:209–230

    Article  Google Scholar 

  36. 36.

    Young AA, Frangi AF (2009) Computational cardiac atlases : from patient to population and back. Exp Physiol 94(5):578–596

    Article  Google Scholar 

  37. 37.

    Zachow S, Lamecker H, Elsholtz B, Stiller M (2005) Reconstruction of mandibular dysplasia using a statistical 3D shape model. Int Congr Ser 1281:1238–1243

    Article  Google Scholar 

  38. 38.

    Zhao F, Zhang H, Wahle A, Thomas MT, Stolpen AH, Scholz TD, Sonka M (2009) Congenital aortic disease : 4D magnetic resonance segmentation and quantitative analysis. Med Image Anal 13(3):483–493

    Article  Google Scholar 

Download references

Funding

This work was supported in part by a PhD grant (120198) from the agency for innovation through science and technology (IWT) of the Flemish government.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Bart Bosmans or Toon Huysmans.

Ethics declarations

Conflict of interest

Prof. Dr. Johan Bosmans and Prof. Dr. Peter de Jaegere are part-time clinical proctor for Medtronic. Prof. Dr. ir. Jos Vander Sloten is a member of the Board of Directors of Materialise N.V. and a shareholder. The remaining authors have no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bosmans, B., Huysmans, T., Lopes, P. et al. Aortic root sizing for transcatheter aortic valve implantation using a shape model parameterisation. Med Biol Eng Comput 57, 2081–2092 (2019). https://doi.org/10.1007/s11517-019-01996-x

Download citation

Keywords

  • Statistical shape modelling
  • Aortic root sizing
  • Transcatheter aortic valve implantation