Skip to main content
Log in

Hybrid position/force output feedback second-order sliding mode control for a prototype of an active orthosis used in back-assisted mobilization

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This article shows the design of a robust second-order sliding mode controller to solve the trajectory tracking problem of an active orthosis for assisting back physiotherapies. The orthosis was designed in agreement with morphological dimensions and its articulations distribution followed the same designing rules. The orthosis has six articulated arms attached to an articulated column. The orthosis was fully instrumented with actuators and position sensors at each articulation. The controller implemented a class of hybrid/position controller depending on the relative force exerted by the patient and the orthosis movement. The position information provided by each articulation was supplied to a distributed super-twisting differentiator to recover the corresponding angular velocity. A set of twisting controllers was implemented to regulate the position of the robot in agreement to predefined reference trajectories. Reference trajectories were obtained from a biomechanical-based analysis. The hybrid tracking control problem solved the automation of the assisted therapy to the patient, including the force feedback. The performance of the orthosis was tested with different dummy bodies with different resistance. The robust output feedback controller successfully tracked the reference trajectories despite the material of the dummy used during the testing. The orthosis was evaluated with two volunteers using a simple reference trajectory.

General structure of the active back assisted orthosis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Bland JH, Boushey DR (1990) Anatomy and physiology of the cervical spine. Semin Arthritis Rheum 20:1–20

    Article  CAS  PubMed  Google Scholar 

  2. McGil S (2007) Low back disorders: evidenced-based prevention and rehabilitation. Human Kinetics. [Online]. Available: http://books.google.com.mx/books?id=j0R4-fzBwPIC

  3. White AA, Panjabi MM (1978) Clinical biomechanics of the spine. Lippincott. [Online]. Available: http://books.google.com.mx/books?id=U5NsAAAAMAAJ

  4. Eisenberg MG (1995) Dictionary of rehabilitation. Springer Publishing Company

  5. Bergmark A (1989) Stability of the lumbar spine. Acta Orthopedica Scandinavica 230:1–54

    CAS  Google Scholar 

  6. Valentin GH, Pedersen LN, Maribo T (2014) Wearing an active spinal orthosis improves back extensor strength in women with osteoporotic vertebral fractures. Prosthetics Orthotics Int 38(3):232–238. [Online]. Available: https://doi.org/10.1177/0309364613497393

    Article  Google Scholar 

  7. Olivier J, Ortlieb A, Bouri M, Bleuler H (2015) Mechanisms for actuated assistive hip orthoses. Robot Auton Syst 73:59–67. wearable Robotics

    Article  Google Scholar 

  8. Sypert GW (1987) External spinal orthotics. Neurosurgery 20(4):642–649

    Article  CAS  PubMed  Google Scholar 

  9. Luenberger L, Colombo G, Riener R, Dietz V (2004) Biofeedback in gait training with the robotic orthosis lokomat. In: IEMBS 26th Annual international conference of the IEEE engineering in medicine and biology society, vol 2, pp 4888–4891

  10. Hyun DJ, Park H, Ha T, Park S, Jung K (2017) Biomechanical design of an agile, electricity-powered lower-limb exoskeleton for weight-bearing assistance. Robot Auton Syst 95:181–195

    Article  Google Scholar 

  11. Asbeck AT, Schmidt K, Walsh CJ (2015) Soft exosuit for hip assistance. Robot Autonom Syst 73:102–110. wearable robotics

    Article  Google Scholar 

  12. Giovacchini F, Vannetti F, Fantozzi M, Cempini M, Cortese M, Parri A, Yan T, Lefeber D, Vitiello N (2015) A light-weight active orthosis for hip movement assistance. Robot Auton Syst 73:123–134. wearable robotics

    Article  Google Scholar 

  13. Spong M, Hutchinson S, Vidyasagar M (2006) Robot modelling and control, F. edn. Wiley

  14. Kingsley C, Poursina M, Sabet S, Dabiri A (2017) Logarithmic complexity dynamics formulation for computed torque control of articulated multibody systems. Mech Mach Theory 116:481–500. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0094114X1630221X

    Article  Google Scholar 

  15. Castaneda A, Luviano A, Chairez I (2014) Robust trajectory tracking of a delta robot through adaptive active disturbance rejection control. IEEE Trans Control Syst Technol, 99. https://doi.org/10.1109/TCST.2014.2367313

  16. Codourey A (1996) Dynamic modelling and mass matrix evaluation of the delta parallel robot for axes decoupling control. In: Proceedings of the 1996 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1211–1218

  17. Jankowski K, Brussel HV (1992) An approach to discrete inverse dynamics control of flexible-joint robots. IEEE Trans Robot Autom 8(5):651–658

    Article  Google Scholar 

  18. Moreno J, Sánchez T, Cruz-Zavala E (2014) Una función de lyapunov suave para el algoritmo super-twisting. In: Proceedings of the XVI LatinAmerican automatic control congress

  19. Levant A (1998) Robust exact differentiation via sliding mode tecnique. Automatica 34(3):379–384

    Article  Google Scholar 

  20. Moreno J, Alvarez J, Rocha-Cozatl E, Diaz-Salgado J (2010) Super-twisting observer-based output feedback control of a class of continuous exothermic chemical reactors. In: Proceedings of the 9th international symposium on dynamics and control of process systems (DYCOPS). Leuven, pp 727–732

  21. Raibert MH, Craig JJ (1981) Hybrid position/force control of manipulators. J Dyn Syst Measur Control 103(2):126–133

    Article  Google Scholar 

  22. Song P, Yu Y, Zhang X (2017) Impedance control of robots: an overview. In: 2017 2nd international conference on cybernetics, robotics and control (CRC), pp 51–55

  23. Utkin V, Guldner J, Shi J (2009) Sliding mode control in electro-mechanical systems, 2nd edn. Automation and Control Engineering

  24. Moreno J (2012) A lyapunov approach to output feedback control using second-order sliding modes. IMA J Math Control Inf Adv

  25. Pisano A, Davila A, Fridman L, Usai E (2008) Cascade control of pm dc drives via second-order sliding-mode technique. IEEE Trans Ind Electron 55(11):3846–3854

    Article  Google Scholar 

  26. Mobayen S, Tchier F, Ragoub L (2017) Design of an adaptive tracker for n-link rigid robotic manipulators based on super-twisting global nonlinear sliding mode control. Int J Syst Sci 48(9):1990–2002

    Article  Google Scholar 

  27. Levant A (2003) Higher-order sliding modes, differentiation and output-feedback control. Int J Control 76 (9-10):924–941

    Article  Google Scholar 

  28. Ming C, Gang C, Feijie H, Qingxuan J (2013) Active disturbance rejection control for trajectory tracking of manipulator joint with flexibility and friction. Appl Mech Mater 325-326 :1229–1232

    Article  Google Scholar 

  29. Hill J, Fahimi F (2011) Active disturbance rejection for bipedal walk of a humanoid using the motion of the arms. In: ASME 2011 International mechanical engineering congress and exposition, pp 137–144

  30. Poznyak A, Sánchez E, Wen Y (2001) Differential neural networks for robust nonlinear control (Identification, state estimation and trajectory tracking). World Scientific Press

  31. Peña GG, Consoni LJ, dos Santos WM, Siqueira AA (2019) Feasibility of an optimal emg-driven adaptive impedance control applied to an active knee orthosis, vol 112. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0921889018304263

  32. Cheah C-C, Wang D (1998) Learning impedance control for robotic manipulators. IEEE Trans Robot Autom 14(3):452–465

    Article  Google Scholar 

  33. Yongling F, Xu H, Sepehri N, Guozhe Z, Jian F, Liming Y, Rongrong Y (2018) Design and performance analysis of position-based impedance control for an electrohydrostatic actuation system. Chin J Aeronaut 31(3):584–596

    Article  Google Scholar 

  34. Hogan N (1987) Stable execution of contact tasks using impedance control. In: IEEE International conference on robotics and automation, pp 1047–1054

  35. Tucker MR, Olivier J, Pagel A, Bleuler H, Bouri M, Lambercy O, del Millán RJ, Riener R, Vallery H, Gassert R (2015) Control strategies for active lower extremity prosthetics and orthotics: a review. J Neuroeng Rehab 12(1):1

    Article  Google Scholar 

  36. Haddad WM, Chellaboina V (2008) Nonlinear dynamical systems and control. Princeton University Press

  37. Moreno A, Osorio M (2012) Strict lyapunov funtions for the super-twisting algorithm. IEEE Tran Aut Cont 57(4):1035–1040

    Article  Google Scholar 

  38. Salgado I, Chairez I, Camacho O, Yanez C (2014) Super-twisting sliding mode differentiation for improving pd controllers performance of second order systems. IS 53(4):1096–1106

    Google Scholar 

  39. Gao Z (2006) Active disturbance rejection control: a paradigm shift in feedback control system design. In: American control conference. Minneapolis, pp 2399–2405

  40. Polyakov A, Chairez I (2014) A new homogeneous quasi-continuous second order sliding mode control. In: Proceedings of the XVI Latin American automatic control congress

  41. Levant A (2007) Finite differences in homogeneous discontinuous control. IEEE Trans Autom Control 52 (7):1208–1217

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Alberto Luviano (UPIITA-IPN) for his remarkable and useful comments on the results achieved in this paper.

Funding

The authors thank the financial support provided by the National Polytechnic Institute through the Research Grants labelled SIP-20 196709, SIP-20195253.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Cruz-Ortiz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballesteros-Escamilla, M., Cruz-Ortiz, D., Salgado, I. et al. Hybrid position/force output feedback second-order sliding mode control for a prototype of an active orthosis used in back-assisted mobilization. Med Biol Eng Comput 57, 1843–1860 (2019). https://doi.org/10.1007/s11517-019-01987-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-01987-y

Keywords

Navigation