Mechanomyography-based muscle fatigue detection during electrically elicited cycling in patients with spinal cord injury

Abstract

Patients with spinal cord injury (SCI) benefit from muscle training with functional electrical stimulation (FES). For safety reasons and to optimize training outcome, the fatigue state of the target muscle must be monitored. Detection of muscle fatigue from mel frequency cepstral coefficient (MFCC) feature of mechanomyographic (MMG) signal using support vector machine (SVM) classifier is a promising new approach. Five individuals with SCI performed FES cycling exercises for 30 min. MMG signals were recorded on the quadriceps muscle group (rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM)) and categorized into non-fatigued and fatigued muscle contractions for the first and last 10 min of the cycling session. For each subject, a total of 1800 contraction-related MMG signals were used to train the SVM classifier and another 300 signals were used for testing. The average classification accuracy (4-fold) of non-fatigued and fatigued state was 90.7% using MFCC feature, 74.5% using root mean square (RMS), and 88.8% with combined MFCC and RMS features. Inter-subject prediction accuracy suggested training and testing data to be based on a particular subject or large collection of subjects to improve fatigue prediction capacity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Liu LQ, Moody J, Traynor M, Dyson S, Gall A (2014) A systematic review of electrical stimulation for pressure ulcer prevention and treatment in people with spinal cord injuries. J Spinal Cord Med 37(6):703–718

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Elbasiouny SM, Moroz D, Bakr MM, Mushahwar VK (2010) Management of spasticity after spinal cord injury: current techniques and future directions. Neurorehabil Neural Repair 24(1):23–33

    PubMed  Article  Google Scholar 

  3. 3.

    Furlan JC, Fehlings MG (2008) Cardiovascular complications after acute spinal cord injury: pathophysiology, diagnosis, and management. Neurosurg Focus 25(5):E13

    PubMed  Article  Google Scholar 

  4. 4.

    Tan CO, Battaglino RA, Morse LR (2013) Spinal cord injury and osteoporosis: causes, mechanisms, and rehabilitation strategies. Int J Phys Med Rehabil 1:127

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Davis GM, Hamzaid NA, Fornusek C (2008) Cardiorespiratory, metabolic, and biomechanical responses during functional electrical stimulation leg exercise: health and fitness benefits. Artif Organs 32(8):625–629

    PubMed  Article  Google Scholar 

  6. 6.

    Chou L-W, Binder-Macleod SA (2007) The effects of stimulation frequency and fatigue on the force-intensity relationship for human skeletal muscle. Clin Neurophysiol 118(6):1387–1396

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Fouré A, Nosaka K, Wegrzyk J, Duhamel G, le Troter A, Boudinet H, Mattei JP, Vilmen C, Jubeau M, Bendahan D, Gondin J (2014) Time course of central and peripheral alterations after isometric neuromuscular electrical stimulation-induced muscle damage. PLoS One 9(9):e107298

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Wigmore DM, Befroy DE, Lanza IR, Kent-Braun JA (2008) Contraction frequency modulates muscle fatigue and the rate of myoglobin desaturation during incremental contractions in humans. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme 33(5):915–921

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Kent-Braun JA, Callahan DM, Fay JL, Foulis SA, Buonaccorsi JP (2014) Muscle weakness, fatigue, and torque variability: effects of age and mobility status. Muscle Nerve 49(2):209–217

    PubMed  Article  Google Scholar 

  10. 10.

    Weir JP, McDonough AL, Hill VJ (1996) The effects of joint angle on electromyographic indices of fatigue. Eur J Appl Physiol Occup Physiol 73(3):387–392

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Islam MA, Sundaraj K, Ahmad RB, Ahamed NU (2013) Mechanomyogram for muscle function assessment: a review. PLoS One 8(3):e58902

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Tarata MT (2003) Mechanomyography versus electromyography, in monitoring the muscular fatigue. BioMed Eng OnLine 2:3–3

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Xiaogang H, William ZR, Nina LS (2014) Motor unit firing rate patterns during voluntary muscle force generation: a simulation study. J Neural Eng 11(2):026015

    Article  Google Scholar 

  14. 14.

    Ibitoye MO et al (2016) Estimation of electrically-evoked knee torque from mechanomyography using support vector regression. Sensors 16(7):1115

    Article  Google Scholar 

  15. 15.

    Mohamad NZ et al (2017) Mechanomyography and torque during FES-evoked muscle contractions to fatigue in individuals with spinal cord injury. Sensors 17(7):1627

    Article  Google Scholar 

  16. 16.

    Orizio C, Liberati D, Locatelli C, de Grandis D, Veicsteinas A (1996) Surface mechanomyogram reflects muscle fibres twitches summation. J Biomech 29(4):475–481

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Barry DT, Cole NM (1990) Muscle sounds are emitted at the resonant frequencies of skeletal muscle. IEEE Trans Biomed Eng 37(5):525–531

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Orizio C, Solomonow M, Baratta R, Veicsteinas A (1992) Influence of motor units recruitment and firing rate on the soundmyogram and EMG characteristics in cat gastrocnemius. J Electromyogr Kinesiol 2(4):232–241

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Ibitoye M, et al. (2016) Torque and mechanomyogram relationships during electrically-evoked isometric quadriceps contractions in persons with spinal cord injury. Vol. 38

  20. 20.

    Ryan ED, Cramer JT, Egan AD, Hartman MJ, Herda TJ (2008) Time and frequency domain responses of the mechanomyogram and electromyogram during isometric ramp contractions: a comparison of the short-time Fourier and continuous wavelet transforms. J Electromyogr Kinesiol 18(1):54–67

    PubMed  Article  Google Scholar 

  21. 21.

    Al-Mulla MR, Sepulveda F (2014) Novel pseudo-wavelet function for MMG signal extraction during dynamic fatiguing contractions. Sensors 14(6):9489–9504

    PubMed  Article  Google Scholar 

  22. 22.

    Hong-Bo X, Yong-Ping Z, Jing-Yi G (2009) Classification of the mechanomyogram signal using a wavelet packet transform and singular value decomposition for multifunction prosthesis control. Physiol Meas 30(5):441

    Article  Google Scholar 

  23. 23.

    Bonato P, Roy SH, Knaflitz M, de Luca CJ (2001) Time-frequency parameters of the surface myoelectric signal for assessing muscle fatigue during cyclic dynamic contractions. IEEE Trans Biomed Eng 48(7):745–753

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Cramer JT, Housh TJ, Weir JP, Johnson GO, Coburn JW, Beck TW (2005) The acute effects of static stretching on peak torque, mean power output, electromyography, and mechanomyography. Eur J Appl Physiol 93(5):530–539

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Akataki K, Mita K, Watakabe M (2004) Electromyographic and mechanomyographic estimation of motor unit activation strategy in voluntary force production. Electromyogr Clin Neurophysiol 44(8):489–496

    CAS  PubMed  Google Scholar 

  26. 26.

    Beck TW, Housh TJ, Fry AC, Cramer JT, Weir JP, Schilling BK, Falvo MJ, Moore CA (2009) A wavelet-based analysis of surface mechanomyographic signals from the quadriceps femoris. Muscle Nerve 39(3):355–363

    PubMed  Article  Google Scholar 

  27. 27.

    Ryan ED, Beck TW, Herda TJ, Hartman MJ, Stout JR, Housh TJ, Cramer JT (2008) Mechanomyographic amplitude and mean power frequency responses during isometric ramp vs. step muscle actions. J Neurosci Methods 168(2):293–305

    PubMed  Article  Google Scholar 

  28. 28.

    Xie H-B, Zheng Y-P, Guo J-Y (2009) Classification of the mechanomyogram signal using a wavelet packet transform and singular value decomposition for multifunction prosthesis control. Physiol Meas 30(5):441–457

    PubMed  Article  Google Scholar 

  29. 29.

    Silva J, Heim W, and Chau T (2004) MMG-based classification of muscle activity for prosthesis control. In The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society

  30. 30.

    Silva J, Heim W, Chau T (2005) A self-contained, mechanomyography-driven externally powered prosthesis. Arch Phys Med Rehabil 86(10):2066–2070

    PubMed  Article  Google Scholar 

  31. 31.

    Alves N, Sejdic E, Sahota B, Chau T (2010) The effect of accelerometer location on the classification of single-site forearm mechanomyograms. Biomed Eng Online 9(1):23

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Kattan A, et al. (2009) Detecting localised muscle fatigue during isometric contraction using genetic programming. in IJCCI.

  33. 33.

    Al-Mulla MR, et al. (2009) Statistical class separation using sEMG features towards automated muscle fatigue detection and prediction. In 2009 2nd International Congress on Image and Signal Processing.

  34. 34.

    Al-Mulla MR, Sepulveda F (2010) Novel feature modelling the prediction and detection of sEMG muscle fatigue towards an automated wearable system. Sensors 10(5):4838–4854

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Beck TW, Housh TJ, Johnson GO, Weir JP, Cramer JT, Coburn JW, Malek MH (2005) Comparison of Fourier and wavelet transform procedures for examining the mechanomyographic and electromyographic frequency domain responses during fatiguing isokinetic muscle actions of the biceps brachii. J Electromyogr Kinesiol 15(2):190–199

    PubMed  Article  Google Scholar 

  36. 36.

    Peters EJD, Fuglevand AJ (1999) Cessation of human motor unit discharge during sustained maximal voluntary contraction. Neurosci Lett 274(1):66–70

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Orizio C (1992) Soundmyogram and EMG cross-spectrum during exhausting isometric contractions in humans. J Electromyogr Kinesiol 2(3):141–149

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Kouzaki M, Shinohara M, Fukunaga T (1999) Non-uniform mechanical activity of quadriceps muscle during fatigue by repeated maximal voluntary contraction in humans. Eur J Appl Physiol Occup Physiol 80(1):9–15

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Esposito F, Orizio C, Veicsteinas A (1998) Electromyogram and mechanomyogram changes in fresh and fatigued muscle during sustained contraction in men. Eur J Appl Physiol Occup Physiol 78(6):494–501

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Doulah ABMSU and Fattah SA (2014) Neuromuscular disease classification based on mel frequency cepstrum of motor unit action potential. In 2014 International Conference on Electrical Engineering and Information & Communication Technology

  41. 41.

    Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, Johansen M, Jones L, Krassioukov A, Mulcahey MJ, Schmidt-Read M, Waring W (2011) International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med 34(6):535–546

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Moon S-H, Choi J-H, Park S-E (2017) The effects of functional electrical stimulation on muscle tone and stiffness of stroke patients. J Phys Ther Sci 29(2):238–241

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Bickel CS, Slade JM, VanHiel LR, Warren GL, Dudley GA (2004) Variable-frequency-train stimulation of skeletal muscle after spinal cord injury. J Rehabil Res Dev 41(1):33–40

    PubMed  Article  Google Scholar 

  44. 44.

    Fazio C (2014) Functional electrical stimulation for incomplete spinal cord injury. Proceedings (Baylor University. Medical Center), 27(4):353–355

  45. 45.

    Szecsi J, Straube A, Fornusek C (2014) A biomechanical cause of low power production during FES cycling of subjects with SCI. J NeuroEngineering Rehabil 11(1):123

    Article  Google Scholar 

  46. 46.

    Ouamer M, Boiteux M, Petitjean M, Travens L, Salès A (1999) Acoustic myography during voluntary isometric contraction reveals non-propagative lateral vibration. J Biomech 32(12):1279–1285

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Islam MA, Hamzaid NA, Ibitoye MO, Hasnan N, Wahab AKA, Davis GM (2018) Mechanomyography responses characterize altered muscle function during electrical stimulation-evoked cycling in individuals with spinal cord injury. In: Elsevier editorial system(tm) for clinical, vol 58, pp 21–27

    Google Scholar 

  48. 48.

    Padmanathan Y, et al. (2014) Assessment of muscle performance using vibromyography (VMG) and electromyography(EMG). In 2014 IEEE 19th International Functional Electrical Stimulation Society Annual Conference (IFESS).

  49. 49.

    Herzog W, Zhang YT, Vaz MA, Guimaraes ACS, Janssen C (1994) Assessment of muscular fatigue using vibromyography. Muscle Nerve 17(10):1156–1161

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Cooper MA, Herda TJ, Vardiman JP, Gallagher PM, Fry AC (2014) Relationships between skinfold thickness and electromyographic and mechanomyographic amplitude recorded during voluntary and non-voluntary muscle actions. J Electromyogr Kinesiol 24(2):207–213

    PubMed  Article  Google Scholar 

  51. 51.

    Jaskólska A, Brzenczek W, Kisiel-Sajewicz K, Kawczyński A, Marusiak J, Jaskólski A (2004) The effect of skinfold on frequency of human muscle mechanomyogram. J Electromyogr Kinesiol 14(2):217–225

    PubMed  Article  Google Scholar 

  52. 52.

    Irino T, et al. (2002) Evaluation of a speech recognition/generation method based on HMM and straight. in INTERSPEECH

  53. 53.

    Obuchi Y (2004) Delta-cepstrum normalization for robust speech recognition. In: Proc. ICA

    Google Scholar 

  54. 54.

    Roberto Gil-Pita, B.l.-G., Manuel Rosa-Zurera, Tailored MFCCs for Sound Environment Classification in Hearing Aids, in Advanced Computer and Communication Engineering Technology: Proceedings of ICOCOE 2015. Vol. 362. Springer, 2015., M.A.O. Hamzah Asyrani Sulaiman, Mohd Fairuz Iskandar Othman, Yahaya Abd Rahim, Naim Che Pee, Editor. 2015

  55. 55.

    Wei H, et al. (2006) An efficient MFCC extraction method in speech recognition. In 2006 IEEE International Symposium on Circuits and Systems.

  56. 56.

    Shang-Ming L, et al. (2001) Improved MFCC feature extraction by PCA-optimized filter-bank for speech recognition. in IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.

  57. 57.

    Gupta S et al (2013) Feature extraction using MFCC. Signal Image Processing 4(4):101

    Google Scholar 

  58. 58.

    Young S, et al. (2002) The HTK book Cambridge university engineering department, 3: p. 175

  59. 59.

    Wahyuni ES (2017) Arabic speech recognition using MFCC feature extraction and ANN classification. In 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)

  60. 60.

    Jong-Hwan L, et al. (2000) Speech feature extraction using independent component analysis. In 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)

  61. 61.

    Xu Q and Liang Y.-Z (2001) Monte Carlo Cross Validation 56:1–11

  62. 62.

    Subasi A (2013) Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. Comput Biol Med 43(5):576–586

    PubMed  Article  Google Scholar 

  63. 63.

    Cutajar M et al. (2013) Hardware-based support vector machine for phoneme classification. in Eurocon 2013

  64. 64.

    Hashem EM, Mabrouk MS (2014) A study of support vector machine algorithm for liver disease diagnosis. Am J Intell Syst 4(1):9–14

    Google Scholar 

  65. 65.

    Akay MF (2009) Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst Appl 36(2, Part 2):3240–3247

    Article  Google Scholar 

  66. 66.

    Khezri M, Jahed M (2007) Real-time intelligent pattern recognition algorithm for surface EMG signals. Biomed Eng Online 6(1):45

    PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Marsolais EB, Edwards BG (1988) Energy costs of walking and standing with functional neuromuscular stimulation and long leg braces. Arch Phys Med Rehabil 69(4):243–249

    CAS  PubMed  Google Scholar 

  68. 68.

    Bickel CS, Gregory CM, Dean JC (2011) Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol 111(10):2399–2407

    PubMed  Article  Google Scholar 

  69. 69.

    Ibitoye MO, et al. (2014) Mechanomyographic parameter extraction methods: an appraisal for clinical applications. Sensors (Basel, Switzerland) 14(12):22940–22970

  70. 70.

    Orizio C (1993) Muscle sound: bases for the. Crit Rev Biomed Eng 21(3):201–243

    CAS  PubMed  Google Scholar 

  71. 71.

    Madeleine P, Hansen EA, Samani A (2014) Linear and nonlinear analyses of multi-channel mechanomyographic recordings reveal heterogeneous activation of wrist extensors in presence of delayed onset muscle soreness. Med Eng Phys 36(12):1656–1664

    PubMed  Article  Google Scholar 

  72. 72.

    Sarlabous L, Torres A, Fiz JA, Morera J, Jané R (2013) Index for estimation of muscle force from mechanomyography based on the Lempel–Ziv algorithm. J Electromyogr Kinesiol 23(3):548–557

    PubMed  Article  Google Scholar 

  73. 73.

    Vromans M, Faghri PD (2018) Functional electrical stimulation-induced muscular fatigue: effect of fiber composition and stimulation frequency on rate of fatigue development. J Electromyogr Kinesiol 38(Supplement C):67–72

    PubMed  Article  Google Scholar 

Download references

Funding

The study was financially supported by the University of Malaya Research Grant (UMRG), grant no. RP035A-15HTM.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nur Azah Hamzaid.

Ethics declarations

This study was granted by the University of Malaya Research Ethics Committee (approval no: 1003.14 (1)).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naeem, J., Hamzaid, N.A., Islam, M.A. et al. Mechanomyography-based muscle fatigue detection during electrically elicited cycling in patients with spinal cord injury. Med Biol Eng Comput 57, 1199–1211 (2019). https://doi.org/10.1007/s11517-019-01949-4

Download citation

Keywords

  • Functional electrical stimulation
  • Muscle fatigue
  • Spinal cord injury
  • Mechanomyography
  • Mel frequency cepstral coefficients (MFCC)