Frequency-induced morphology alterations in microconfined biological cells

Abstract

Low-intensity therapeutic ultrasound has demonstrated an impetus in bone signaling and tissue healing for decades now. Though this technology is clinically well proven, still there are breaches in studies to understand the fundamental principle of how osteoblast tissue regenerates physiologically at the cellular level with ultrasound interaction as a form of acoustic wave stimuli. Through this article, we illustrate an analysis for cytomechanical changes of cell membrane periphery as a basic first physical principle for facilitating late downstream biochemical pathways. With the help of in situ single-cell direct analysis in a microfluidic confinement, we demonstrate that alteration of low-intensity pulse ultrasound (LIPUS) frequency would physically perturb cell membrane and establish inherent cell oscillation. We experimentally demonstrate here that, at LIPUS resonance near 1.7 MHz (during 1–3 MHz alteration), cell membrane area would expand to 6.85 ± 0.7% during ultrasound exposure while it contracts 44.68 ± 0.8% in post actuation. Conversely, cell cross-sectional area change (%) from its previous morphology during and after switching off LIPUS was reversibly different before and after resonance. For instance, at 1.5 MHz, LIPUS exposure produced 1.44 ± 0.5% expansion while in contrast 2 MHz instigates 1.6 ± 0.3% contraction. We conclude that alteration of LIPUS frequency from 1–3 MHz keeping other ultrasound parameters like exposure time, pulse repetition frequency (PRF), etc., constant, if applied to a microconfined biological single living cell, would perturb physical structure reversibly based on the system resonance during and post exposure ultrasound pulsing. We envision, in the near future, our results would constitute the foundation of mechanistic effects of low-intensity therapeutic ultrasound and its allied potential in medical applications.

Frequency Dependent Characterization of Area Strain in Cell Membrane by Microfluidic Based Single Cell Analysis

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Lowry WE, Quan WL (2010) Roadblocks en route to the clinical application of induced pluripotent stem cells. J Cell Sci 0(5):643–651

    CAS  Article  Google Scholar 

  2. 2.

    Haar GT (2007) Therapeutic applications of ultrasound. Prog Biophys Mol Biol 93(1):111–129

    PubMed  Google Scholar 

  3. 3.

    Wood RW, Loomis AL (1927) Xxxviii. The physical and biological effects of high-frequency sound-waves of great intensity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4(22):417–436

    CAS  Article  Google Scholar 

  4. 4.

    Baker KG, Robertson VJ, Duck FA (2001) A review of therapeutic ultrasound: biophysical effects. Phys Ther 81(7):1351–1358

    CAS  PubMed  Google Scholar 

  5. 5.

    Speed CA (2001) Therapeutic ultrasound in soft tissue lesions. Rheumatology 40(12):1331–1336

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Artho PA, Thyne JG, Warring BP, Willis CD, Brismee J-M, Latman NS (2002) A calibration study of therapeutic ultrasound units. Phys Ther 82(3):257–263

    PubMed  Google Scholar 

  7. 7.

    Alhadlaq A, Mao JJ (2004) Mesenchymal stem cells: isolation and therapeutics. Stem Cells Dev 13 (4):436–448

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Saini V, Yadav S, McCormick S (2011) Low-intensity pulsed ultrasound modulates shear stress induced pghs-2 expression and pge2 synthesis in mlo-y4 osteocyte-like cells. Ann Biomed Eng 39(1):378–393

    PubMed  Article  Google Scholar 

  9. 9.

    Bose N, Zhang X, Maiti TK, Chakraborty S (2015) The role of acoustofluidics in targeted drug delivery. Biomicrofluidics 9(5):052609

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Daftary GS, Taylor HS (2006) Endocrine regulation of hox genes. Endocr Rev 27(4):331–355

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Tabuchi Y, Ando H, Takasaki I, Feril LB, Zhao Q-L, Ogawa R, Kudo N, Tachibana K, Kondo T (2007) Identification of genes responsive to low intensity pulsed ultrasound in a human leukemia cell line molt-4. Cancer Lett 246(1):149–156

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    de Albornoz PM, Khanna A, Longo UG, Forriol F, Maffulli N (2011) The evidence of low-intensity pulsed ultrasound for in vitro, animal and human fracture healing. Br Med Bull 100(1):39–57

    Article  Google Scholar 

  13. 13.

    Cermik D, Karaca M, Taylor HS (2001) Hoxa10 expression is repressed by progesterone in the myometrium: differential tissue-specific regulation of hox gene expression in the reproductive tract. J Clin Endocrinol Metab 86 (7):3387–3392

    CAS  PubMed  Google Scholar 

  14. 14.

    Zacherl M, Gruber G, Radl R, Rehak PH, Windhager R (2009) No midterm benefit from low intensity pulsed ultrasound after chevron osteotomy for hallux valgus. Ultrasound Med Biol 35(8):1290–1297

    PubMed  Article  Google Scholar 

  15. 15.

    Tan MK, Friend JR, Yeo LY (2009) Interfacial jetting phenomena induced by focused surface vibrations. Phys Rev Lett 103(2):024501

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Shaw A, Hodnett M (2008) Calibration and measurement issues for therapeutic ultrasound. Ultrasonics 48(4):234–252

    PubMed  Article  Google Scholar 

  17. 17.

    Hauser J, Hauser M, Muhr G, Esenwein S (2009) Ultrasound-induced modifications of cytoskeletal components in osteoblast-like saos-2 cells. J Orthop Res 27(3):286–294

    PubMed  Article  Google Scholar 

  18. 18.

    Mizrahi N, Zhou EH, Lenormand G, Krishnan R, Weihs D, Butler JP, Weitz DA, Fredberg JJ, Kimmel E (2012) Low intensity ultrasound perturbs cytoskeleton dynamics. Soft Matter 8(8):2438–2443

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Noriega S, Hasanova G, Subramanian A (2013) The effect of ultrasound stimulation on the cytoskeletal organization of chondrocytes seeded in three-dimensional matrices. Cells Tissues Organs 197(1):14–26

    PubMed  Article  Google Scholar 

  20. 20.

    Zhang S, Cheng J, Qin Y-X (2012) Mechanobiological modulation of cytoskeleton and calcium influx in osteoblastic cells by short-term focused acoustic radiation force. PLoS One 7(6):e38343

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Mahoney CM, Morgan MR, Harrison A, Humphries MJ, Bass MD (2009) Therapeutic ultrasound bypasses canonical syndecan-4 signaling to activate rac1. J Biol Chem 284(13):8898–8909

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Roper J, Harrison A, Bass MD (2012) Induction of adhesion-dependent signals using low-intensity ultrasound. J Vis Exp: JoVE (63):4024. https://doi.org/10.3791/4024

  23. 23.

    Zhou S, Schmelz A, Seufferlein T, Li Y, Zhao J, Bachem MG (2004) Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts. J Biol Chem 279(52):54463–54469

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Hu Y, Wan JMF, Alfred CH (2014) Cytomechanical perturbations during low-intensity ultrasound pulsing. Ultrasound Med Biol 40(7):1587–1598

    PubMed  Article  Google Scholar 

  25. 25.

    Banerjee H (2014) Frequency driven alteration in cellular morphology during ultrasound pulsing in a microfluidic confinement. PhD thesis, Indian Institute of Technology, Gandhinagar

  26. 26.

    Das T, Chakraborty S (2013) Perspective: flicking with flow: can microfluidics revolutionize the cancer research? Biomicrofluidics 7(1):011811

    PubMed Central  Article  CAS  Google Scholar 

  27. 27.

    Banerjee H, Suhail M, Ren H (2018) Hydrogel actuators and sensors for biomedical soft robots: brief overview with impending challenges. Biomimetics 3(3):15

    PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Claes L, Willie B (2007) The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol 93 (1):384–398

    PubMed  Article  Google Scholar 

  29. 29.

    Duck FA (2007) Medical and non-medical protection standards for ultrasound and infrasound. Prog Biophys Mol Biol 93(1):176–191

    PubMed  Article  Google Scholar 

  30. 30.

    Das T, Maiti TK, Chakraborty S (2011) Augmented stress-responsive characteristics of cell lines in narrow confinements. Integr Biol 3(6):684–695

    CAS  Article  Google Scholar 

  31. 31.

    Santini MT, Rainaldi G, Romano R, Ferrante A, Clemente S, Motta A, Indovina PL (2004) Mg-63 human osteosarcoma cells grown in monolayer and as three-dimensional tumor spheroids present a different metabolic profile: a 1h nmr study. FEBS Lett 557(1–3):148–154

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442(7101):403–411

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Feril LB, Kondo T, Cui Z-G, Tabuchi Y, Zhao Q-L, Ando H, Misaki T, Yoshikawa H, Umemura S-I (2005) Apoptosis induced by the sonomechanical effects of low intensity pulsed ultrasound in a human leukemia cell line. Cancer Lett 221(2):145–152

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Ward TH, Cummings J, Dean E, Greystoke A, Hou J-M, Backen A, Ranson M, Dive C (2008) Biomarkers of apoptosis. Br J Cancer 99(6):841

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Li X, Kierfeld J, Lipowsky R (2009) Actin polymerization and depolymerization coupled to cooperative hydrolysis. Phys Rev Lett 103(4):048102

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Wang J, Boja ES, Tan W, Tekle E, Fales HM, English S, Mieyal JJ, Chock PB (2001) Reversible glutathionylation regulates actin polymerization in a431 cells. J Biol Chem 276(51):47763–47766

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Yonezawa Naoto, Nishida E, Sakai H (1985) Ph control of actin polymerization by cofilin. J Biol Chem 260(27):14410–14412

    CAS  PubMed  Google Scholar 

  38. 38.

    Cárdenas L, Lovy-Wheeler A, Kunkel JG, Hepler PK (2008) Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol 146(4):1611–1621

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. 39.

    Krasovitski B, Frenkel V, Shoham S, Kimmel E (2011) Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci 108(8):3258–3263

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Van der Meer SM, Versluis M, Lohse D, Chin CT, Bouakaz A, De Jong N (2004) The resonance frequency of sonovue/spl trade/as observed by high-speed optical imaging. In: Ultrasonics symposium IEEE, vol 1, p 2004

  41. 41.

    Zinin PV, Allen JS III (2009) Deformation of biological cells in the acoustic field of an oscillating bubble. Phys Rev E 79(2): 021910

    Article  CAS  Google Scholar 

  42. 42.

    Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75(4):2038–2049

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Hopkins PM, Bodenham AR, Reeves ST (2008) Practical ultrasound in anesthesia for critical care and pain management. Taylor & Francis US

  44. 44.

    Iwashina T, Mochida J, Miyazaki T, Watanabe T, Iwabuchi S, Ando K, Hotta T, Sakai D (2006) Low-intensity pulsed ultrasound stimulates cell proliferation and proteoglycan production in rabbit intervertebral disc cells cultured in alginate. Biomaterials 27(3):354–361

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Khan Y, Laurencin CT (2008) Fracture repair with ultrasound: clinical and cell-based evaluation. JBJS 90((Supplement_1)):138–144

    Article  Google Scholar 

  46. 46.

    Norvell SM, Alvarez M, Bidwell JP, Pavalko FM (2004) Fluid shear stress induces β-catenin signaling in osteoblasts. Calcif Tissue Int 75(5):396–404

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Mishra D (2013) Osteoblast microtissues as profunctional modules for bone tissue engineering applications. PhD thesis, IIT Kharagpur

  48. 48.

    Azuma Y, Ito M, Harada Y, Takagi H, Ohta T, Jingushi S (2001) Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res 16(4):671–680

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Iwai T, Harada Y, Imura K, Iwabuchi S, Murai J, Hiramatsu K, Myoui A, Yoshikawa H, Tsumaki N (2007) Low-intensity pulsed ultrasound increases bone ingrowth into porous hydroxyapatite ceramic. J Bone Miner Metab 25(6):392–399

    PubMed  Article  Google Scholar 

  50. 50.

    Hongmei Yu, Meyvantsson I, Shkel IA, Beebe DJ (2005) Diffusion dependent cell behavior in microenvironments. Lab Chip 5(10):1089–1095

    Article  CAS  Google Scholar 

  51. 51.

    Yang L, Effler JC, Kutscher BL, Sullivan SE, Robinson DN, Iglesias PA (2008) Modeling cellular deformations using the level set formalism. BMC Syst Biol 2(1):68

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Zohar O, Ikeda M, Shinagawa H, Inoue H, Nakamura H, Elbaum D, Alkon DL, Yoshioka T (1998) Thermal imaging of receptor-activated heat production in single cells. Biophys J 74(1):82– 89

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Bruus H (2012) Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip 12(6):1014–1021

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Wells PNT (1975) Absorption and dispersion of ultrasound in biological tissue. Ultrasound Med Biol 1 (4):369–376

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    van Wamel A, Bouakaz A, Versluis M, de Jong N (2004) Micromanipulation of endothelial cells: ultrasound-microbubble-cell interaction. Ultrasound in Med Biol 3(9):1255–1258

    Article  Google Scholar 

  56. 56.

    Mundi R, Petis S, Kaloty R, Shetty V, Bhandari M (2009) Low-intensity pulsed ultrasound: fracture healing. Indian Journal of Orthopaedics 43(2):132

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Mettin R, Akhatov I, Parlitz U, Ohl CD, Lauterborn W (1997) Bjerknes forces between small cavitation bubbles in a strong acoustic field. Physical Rev E 56(3):2924

    CAS  Article  Google Scholar 

  58. 58.

    Pounder NM, Harrison AJ (2008) Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. Ultrasonics 48(4):330–338

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Xing J (2016) Design of low-intensity pulsed ultrasound device intensity sensor and its application to enhance vaccine production. PhD thesis, University of Alberta

  60. 60.

    Fávaro-Pípi E, Feitosa SM, Ribeiro DA, Bossini P, Oliveira P, Parizotto NA, Renno ACM (2010) Comparative study of the effects of low-intensity pulsed ultrasound and low-level laser therapy on bone defects in tibias of rats. Lasers Med Sci 25(5):727–732

    PubMed  Article  Google Scholar 

  61. 61.

    Gebauer D, Mayr E, Orthner E, Ryaby JP (2005) Low-intensity pulsed ultrasound: effects on nonunions. Ultrasound in Med Biol 31(10):1391–1402

    Article  Google Scholar 

  62. 62.

    Schuster A, Schwab T, Bischof M, Klotz M, Lemor R, Degel C, Schäfer K-H (2013) Cell specific ultrasound effects are dose and frequency dependent. Annals of Anatomy-Anatomischer Anzeiger 195(1):57–67

    CAS  Article  Google Scholar 

  63. 63.

    Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K, Makin IRS (2012) Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med 31(4):623– 634

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Kopechek JA, Kim H, McPherson DD, Holland CK (2010) Calibration of the 1-mhz sonitron ultrasound system. Ultrasound in Med Biol 36(10):1762–1766

    Article  Google Scholar 

  65. 65.

    Leskinen JJ, Hynynen K (2012) Study of factors affecting the magnitude and nature of ultrasound exposure with in vitro set-ups. Ultrasound in Med Biol 38(5):777–794

    Article  Google Scholar 

  66. 66.

    Pietak A, Levin M (2017) Bioelectric gene and reaction networks: computational modelling of genetic, biochemical and bioelectrical dynamics in pattern regulation. Journal of The Royal Society Interface 14(134):20170425

    PubMed Central  Article  CAS  Google Scholar 

  67. 67.

    Maddala J, Srinivasan B, Bithi SS, Vanapalli SA, Rengaswamy R (2012) Design of a model-based feedback controller for active sorting and synchronization of droplets in a microfluidic loop. AICHE J 58(7):2120–2130

    CAS  Article  Google Scholar 

  68. 68.

    Banerjee H, Srinivasan B (2013) Modelling, optimization and control of droplet based microfluidic technology for single-cell high-throughput screening

Download references

Acknowledgements

All experiments were performed in Department of Biotechnology, Indian Institute of Technology Kharagpur, India, under supervision of Professor Tapas Kumar Maiti. We would also like to thank Dr. Dario Carugo, University of Southampton, for helping and guiding to optimize the ultrasound setup for our ultrasound-cell interaction study. For assisting the biological experiments, we would like to extend our sincere acknowledgement to Mr. Joyjyoti Das, Dr. Birendra Behera, and Dr. Nilanjana Bose Chakraborty.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hritwick Banerjee or Hongliang Ren.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest and there was no funding associated with this research.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 11.3 MB)

(MP4 20.7 MB)

(MP4 8.09 MB)

(MP4 11.3 MB)

(MP4 20.7 MB)

(MP4 8.09 MB)

(PDF 1.06 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banerjee, H., Roy, B., Chaudhury, K. et al. Frequency-induced morphology alterations in microconfined biological cells. Med Biol Eng Comput 57, 819–835 (2019). https://doi.org/10.1007/s11517-018-1908-y

Download citation

Keywords

  • Cellular morphology
  • Microfluidic confinement
  • Ultrasound therapy
  • LIPUS