Skip to main content

Nonparametric dynamical model of cardiorespiratory responses at the onset and offset of treadmill exercises

Abstract

This paper applies a nonparametric modelling method with kernel-based regularization to estimate the carbon dioxide production during jogging exercises. The kernel selection and regularization strategies have been discussed; several commonly used kernels are compared regarding the goodness-of-fit, sensitivity, and stability. Based on that, the most appropriate kernel is then selected for the construction of the regularization term. Both the onset and offset of the jogging exercises are investigated. We compare the identified nonparametric models, which include both impulse response models and step response models for the two periods, as well as the relationship between oxygen consumption and carbon dioxide production. The result statistically indicates that the steady-state gain of the carbon dioxide production in the onset of exercise is bigger than that in the offset while the response time of both onset and offset are similar. Compared with oxygen consumption, the response speed of carbon dioxide production is slightly slower in both onset and offset period while its steady-state gains are similar for both periods. The effectiveness of the kernel-based method for the dynamic modelling of cardiorespiratory response to exercise is also well demonstrated.

Comparison between VO2 and VCO2 during onset and offset of exercise

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    McLaughlin JE, King GA, Howley ET, Bassett DR Jr, Ainsworth BE (2001) Validation of the cosmed k4b2 portable metabolic system. Int J Sports Med 22(04):280–284

    CAS  Article  Google Scholar 

  2. 2.

    Henning B, Löfgren R, Sjöström L (1996) Chamber for indirect calorimetry with improved transient response. Med Biol Eng Comput 34(3):207–212

    CAS  Article  Google Scholar 

  3. 3.

    Hill AV, Long CNH, Lupton H (1924) Muscular exercise, lactic acid, and the supply and utilisation of oxygen. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 97 (681):84–138

    CAS  Article  Google Scholar 

  4. 4.

    Wasserman K, Whipp BJ, Koyl SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. J appl Physiol 35(82):236

    CAS  Article  Google Scholar 

  5. 5.

    Mukhopadhyay S, Sircar P (1996) Parametric modelling of ECG signal. Med Biol Eng Comput 34(2):171–174

    CAS  Article  Google Scholar 

  6. 6.

    Lu L, Hamzaoui L, Brown BH, Rigaud B, Smallwood RH, Barber DC, Morucci JP (1996) Parametric modelling for electrical impedance spectroscopy system. Med Biol Eng Comput 34(2):122–126

    CAS  Article  Google Scholar 

  7. 7.

    Lin CC, Chen CM, Yang IF, Yang TF (2005) Automatic optimum order selection of parametric modelling for the evaluation of abnormal intra-qrs signals in signal-averaged electrocardiograms. Med Biol Eng Comput 43 (2):218–224

    CAS  Article  Google Scholar 

  8. 8.

    Su SW, Wang L, Celler BG, Savkin AV (2007) Oxygen uptake estimation in humans during exercise using a Hammerstein model. Ann Biomed Eng 35(11):1898–1906

    Article  Google Scholar 

  9. 9.

    Su SW, Wang L, Celler BG, Savkin AV, Guo Y (2007) Identification and control for heart rate regulation during treadmill exercise. IEEE Trans Biomed Eng 54(7):1238–1246

    Article  Google Scholar 

  10. 10.

    Su SW, Wang L, Celler BG, Savkin AV, Guo Y (2006) Modelling and control for heart rate regulation during treadmill exercise. In: Engineering in medicine and biology society, 2006. EMBS’06. 28Th Annual International Conference of the IEEE, IEEE, pp 4299–4302

  11. 11.

    Chen Tianshi, Ohlsson Henrik, Ljung Lennart (2012) On the estimation of transfer functions, regularizations and gaussian processes—revisited. Automatica 48(8):1525–1535

    Article  Google Scholar 

  12. 12.

    Pillonetto Gianluigi, Chiuso Alessandro, Nicolao Giuseppe De (2011) Prediction error identification of linear systems: a nonparametric gaussian regression approach. Automatica 47(2):291– 305

    Article  Google Scholar 

  13. 13.

    Pillonetto Gianluigi, Nicolao Giuseppe De (2010) A new kernel-based approach for linear system identification. Automatica 46(1):81–93

    Article  Google Scholar 

  14. 14.

    Leeb H, Pötscher BM (2005) Model selection and inference: facts and fiction. Economet Theor 21(1):21–59

    Article  Google Scholar 

  15. 15.

    Chen T, Andersen MS, Ljung L, Chiuso A, Pillonetto G (2014) System identification via sparse multiple kernel-based regularization using sequential convex optimization techniques. IEEE Trans Autom Control 59(11):2933–2945

    Article  Google Scholar 

  16. 16.

    Chen T, Ljung L (2013) Implementation of algorithms for tuning parameters in regularized least squares problems in system identification. Automatica 49(7):2213–2220

    Article  Google Scholar 

  17. 17.

    Pillonetto G, De Nicolao G (2011) Kernel selection in linear system identification Part I: a gaussian process perspective. In: 2011 50th IEEE conference on decision and control and european control conference (CDC-ECC), IEEE, pp 4318–4325

  18. 18.

    Pillonetto G, Dinuzzo F, Chen T, De Nicolao G, Ljung L (2014) Kernel methods in system identification, machine learning and function estimation. A survey. Automatica 50(3):657–682

    Article  Google Scholar 

  19. 19.

    Chiuso A, Chen T, Ljung L, Pillonetto G (2013) Regularization strategies for nonparametric system identification. In: 2013 IEEE 52nd annual conference on decision and control (CDC), IEEE, pp 6013–6018

  20. 20.

    Chen T, Ljung L (2016) On kernel design for regularized LTI system identification. arXiv:1612.03542

  21. 21.

    Chen T, Ohlsson H, Goodwin GC, Ljung L (2011) Kernel selection in linear system identification part II: a classical perspective. In: 2011 50th IEEE Conference on decision and control and european control conference (CDC-ECC), IEEE, pp 4326–4331

  22. 22.

    American College of Sports Medicine. Guidelines for exercise testing and prescription Williams & Wilkins (1991)

  23. 23.

    Van der Walt WH, Wyndham CH (1973) An equation for prediction of energy expenditure of walking and running. J Appl Physiol 34(5):559–563

    Article  Google Scholar 

  24. 24.

    Abe D, Yanagawa K, Niihata S (2004) Effects of load carriage, load position, and walking speed on energy cost of walking. Appl Ergon 35(4):329–335

    Article  Google Scholar 

  25. 25.

    Puente-Maestu L, Sanz ML, Sanz P, Ruiz De Ona JM, Rodriguez-Hermosa JL, Whipp BJ (2000) Effects of two types of training on pulmonary and cardiac responses to moderate exercise in patients with COPD. Eur Respir J 15(6):1026–1032

    CAS  Article  Google Scholar 

  26. 26.

    Zoladz JA, Grassi B, Majerczak J, Szkutnik Z, Korostyński M, Grandys M, Jarmuszkiewicz W, Korzeniewski B (2014) Mechanisms responsible for the acceleration of pulmonary VO2 on-kinetics in humans after prolonged endurance training. Am J Physiol Regul Integr Comp Physiol 307(9):R1101–R1114

    CAS  Article  Google Scholar 

  27. 27.

    Polle DC, Jones AM (2007) Towards an understanding of the mechanistic bases of VO2 kinetics: summary of key points raised in chapters 2—11. In: Oxygen uptake kinetics in sport, exercise and medicine, pp 294–328

  28. 28.

    Hunt KJ, Fankhauser SE, Saengsuwan Ji (2015) Identification of heart rate dynamics during moderate-to-vigorous treadmill exercise. Biomed Eng Online 14(1):117

    Article  Google Scholar 

  29. 29.

    Rich PR (2003) The molecular machinery of Keilin’s respiratory chain

    CAS  Article  Google Scholar 

  30. 30.

    Stryer L (1995) Biochemistry, 1995. WH freeman and Co, Fourth Google Scholar, New york

    Google Scholar 

  31. 31.

    Peronnet F, Massicotte D et al. (1991) Table of nonprotein respiratory quotient: an update. Can J Sport Sci 16(1):23–29

    CAS  PubMed  Google Scholar 

  32. 32.

    Yi Z, Haddad A, Su SW, Celler BG, Coutts AJ, Duffield R, Donges CE, Nguyen HT (2014) An equivalent circuit model for onset and offset exercise response. Biomed Eng Online 13(1): 145

    Article  Google Scholar 

  33. 33.

    Berg WE (1947) Individual differences in respiratory gas exchange during recovery from moderate exercise. American Journal of Physiology–Legacy Content 149(3):597–610

    CAS  Article  Google Scholar 

  34. 34.

    Beltz NM, Amorim FT, Gibson AL, Janot JM, Kravitz L, Mermier CM, Cole N, Moriarty TA, Nunez TP, Trigg S et al (2018) Hemodynamic and metabolic responses to self-paced and ramp-graded exercise testing protocols. Appl Physiol Nutr Metab (999): 1–8

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Steven W. Su.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Ye, L., Naik, G.R. et al. Nonparametric dynamical model of cardiorespiratory responses at the onset and offset of treadmill exercises. Med Biol Eng Comput 56, 2337–2351 (2018). https://doi.org/10.1007/s11517-018-1860-x

Download citation

Keywords

  • Nonparametric modelling
  • Cardiorespiratory response to exercise
  • Treadmill exercise
  • Carbon dioxide production