Medical & Biological Engineering & Computing

, Volume 56, Issue 10, pp 1861–1874 | Cite as

A new parameter tuning approach for enhanced motor imagery EEG signal classification

  • Shiu Kumar
  • Alok Sharma
Original Article


A brain-computer interface (BCI) system allows direct communication between the brain and the external world. Common spatial pattern (CSP) has been used effectively for feature extraction of data used in BCI systems. However, many studies show that the performance of a BCI system using CSP largely depends on the filter parameters. The filter parameters that yield most discriminating information vary from subject to subject and manually tuning of the filter parameters is a difficult and time-consuming exercise. In this paper, we propose a new automated filter tuning approach for motor imagery electroencephalography (EEG) signal classification, which automatically and flexibly finds the filter parameters for optimal performance. We have evaluated the performance of our proposed method on two public benchmark datasets. Compared to the existing conventional CSP approach, our method reduces the average classification error rate by 2.89% and 3.61% for BCI Competition III dataset IVa and BCI Competition IV dataset I, respectively. Moreover, our proposed approach also achieved lowest average classification error rate compared to state-of-the-art methods studied in this paper. Thus, our proposed method can be potentially used for developing improved BCI systems, which can assist people with disabilities to recover their environmental control. It can also be used for enhanced disease recognition such as epileptic seizure detection using EEG signals.

Graphical abstract


Brain-computer interface (BCI) Filter tuning Genetic algorithm (GA) Motor imagery (MI) Temporal filters 



Special thanks to the editors and anonymous reviewers for their positive and constructive comments and suggestions that helped improve our manuscript.

Funding information

This work was supported by the Faculty Research Committee of the University of the South Pacific, Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan, and College Research Committee of Fiji National University.

Supplementary material

11517_2018_1821_MOESM1_ESM.pdf (375 kb)
ESM 1 (PDF 374 kb).


  1. 1.
    Akram F, Metwally MK, Hee-Sok H, Hyun-Jae J, Tae-Seong K (2013) A novel P300-based BCI system for words typing. In: 2013 International Winter Workshop on Brain-Computer Interface (BCI). pp 24–25. doi:
  2. 2.
    Andrew C, Pfurtscheller G (1997) On the existence of different alpha band rhythms in the hand area of man. Neurosci Lett 222:103–106. CrossRefPubMedGoogle Scholar
  3. 3.
    Ang KK, Chin ZY, Zhang H, Guan C (2008) Filter bank common spatial pattern (FBCSP) in brain-computer interface. In: IEEE International Joint Conference on Neural Networks pp 2390–2397. doi:
  4. 4.
    Blankertz B, Dornhege G, Krauledat M, Müller KR, Curio G (2007) The non-invasive Berlin Brain–Computer Interface: fast acquisition of effective performance in untrained subjects. NeuroImage 37:539–550. CrossRefPubMedGoogle Scholar
  5. 5.
    Cincotti F, Mattia D, Aloise F, Bufalari S, Schalk G, Oriolo G, Cherubini A, Marciani MG, Babiloni F (2008) Non-invasive brain–computer interface system: towards its application as assistive technology. Brain Res Bull 75:796–803. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dornhege G, Blankertz B, Curio G, Muller K (2004) Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Trans Biomed Eng 51:993–1002. CrossRefPubMedGoogle Scholar
  7. 7.
    Dornhege G, Blankertz B, Krauledat M, Losch F, Curio G, Muller KR (2006) Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans Biomed Eng 53:2274–2281. CrossRefPubMedGoogle Scholar
  8. 8.
    Higashi H, Tanaka T (2013) Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification. IEEE Trans Biomed Eng 60:1100–1110. CrossRefPubMedGoogle Scholar
  9. 9.
    Janjarasjitt S (2017) Epileptic seizure classifications of single-channel scalp EEG data using wavelet-based features and SVM. Med Biol Eng Comput 55:1743–1761. CrossRefPubMedGoogle Scholar
  10. 10.
    Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report TR06: Erciyes UniversityGoogle Scholar
  11. 11.
    Kirmizi-Alsan E, Bayraktaroglu Z, Gurvit H, Keskin YH, Emre M, Demiralp T (2006) Comparative analysis of event-related potentials during Go/NoGo and CPT: decomposition of electrophysiological markers of response inhibition and sustained attention. Brain Res 1104:114–128. CrossRefPubMedGoogle Scholar
  12. 12.
    Kleih SC, Kuafmann T, Zickler C et al (2011) Out of the frying pan into the fire-the P300-based BCI faces real-world challenges. Prog Brain Res 194:27–46. CrossRefPubMedGoogle Scholar
  13. 13.
    Koles ZJ (1991) The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. Electroencephalogr Clin Neurophysiol 79:440–447. CrossRefPubMedGoogle Scholar
  14. 14.
    Kumar S, Mamun K, Sharma A (2017) CSP-TSM: optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI. Comput Biol Med 91:231–242. CrossRefPubMedGoogle Scholar
  15. 15.
    Kumar S, Sharma A, Mamun K, Tsunoda T (2016) A Deep learning approach for motor imagery EEG signal classification. In: 3rd Asia-Pacific World Congress on Computer Science and Engineering. doi:
  16. 16.
    Kumar S, Sharma A, Tsunoda T (2017) An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information. BMC Bioinformatics 18:545. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kumar S, Sharma R, Sharma A, Tsunoda T (2016) Decimation filter with common spatial pattern and fishers discriminant analysis for motor imagery classification. In: IEEE World Congress on Computational Intelligence doi:
  18. 18.
    La Rocca D, Campisi P, Sole-Casals J (2013) EEG based user recognition using BUMP modelling. In: International Conference of the Biometrics Special Interest Group (BIOSIG). pp 1–12Google Scholar
  19. 19.
    Lemm S, Blankertz B, Curio G, Muller K (2005) Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans Biomed Eng 52:1541–1548. CrossRefPubMedGoogle Scholar
  20. 20.
    McFarland DJ, Sarnacki WA, Wolpaw JR (2010) Electroencephalographic (EEG) control of three-dimensional movement. J Neural Eng 7:036007. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Miao M, Wang A, Liu F (2017) A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition. Med Biol Eng Comput 55:1589–1603. CrossRefPubMedGoogle Scholar
  22. 22.
    Mumtaz W, Ali SSA, Yasin MAM, Malik AS (2018) A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD). Medi Biol Eng Comput 56:233–246. CrossRefGoogle Scholar
  23. 23.
    Naveen, R.S., and Julian, A. (2013). Brain computing interface for wheel chair control. In: Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT). pp 1–5. doi:
  24. 24.
    Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12:1211–1279. CrossRefPubMedGoogle Scholar
  25. 25.
    Novi Q, Cuntai G, Dat TH, Ping X (2007) Sub-band common spatial pattern (SBCSP) for brain-computer interface. In: 3rd International IEEE/EMBS Conference on Neural Engineering. pp 204–207. doi:
  26. 26.
    Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857. CrossRefPubMedGoogle Scholar
  27. 27.
    Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intelligence 1:33–57CrossRefGoogle Scholar
  28. 28.
    Ramesh S, Krishna MG, Nakirekanti M (2014) Brain computer interface system for mind controlled robot using Bluetooth. Int J Comput Appl 104:20–23Google Scholar
  29. 29.
    Ramoser H, Muller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8:441–446. CrossRefPubMedGoogle Scholar
  30. 30.
    Samiee K, Kovcs P, Gabbouj M (2017) Epileptic seizure detection in long-term EEG records using sparse rational decomposition and local Gabor binary patterns feature extraction. Knowledge Based Syst 118:228–240. CrossRefGoogle Scholar
  31. 31.
    Serruya MD (2014) Bottlenecks to clinical translation of direct brain-computer interfaces. Front Syst Neurosci 8:226. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sharma A, Imoto S, Miyano S (2012) A between-class overlapping filter-based method for transcriptome data analysis. J Bioinforma Comput Biol 10:1250010. CrossRefGoogle Scholar
  33. 33.
    Sharma A, Imoto S, Miyano S (2012) A filter based feature selection algorithm using null space of covariance matrix for DNA microarray gene expression data. Current Bioinform 7:289–294. CrossRefGoogle Scholar
  34. 34.
    Sharma A, Imoto S, Miyano S (2012) A top-r feature selection algorithm for microarray gene expression data. IEEE/ACM Trans Comput Biol Bioinform 9:754–764. CrossRefPubMedGoogle Scholar
  35. 35.
    Sharma A, Imoto S, Miyano S, Sharma V (2012) Null space based feature selection method for gene expression data. Int J Mach Learn Cybernetics 3:269–276. CrossRefGoogle Scholar
  36. 36.
    Sharma A, Koh C, Imoto S, Miyano S (2011) Strategy of finding optimal number of features on gene expression data. Electron Lett 47:480–482. CrossRefGoogle Scholar
  37. 37.
    Sharma A, Paliwal KK (2015) A deterministic approach to regularized linear discriminant analysis. Neurocomputing 151:207–214. CrossRefGoogle Scholar
  38. 38.
    Sharma A, Paliwal KK (2007) Fast principal component analysis using fixed-point algorithm. Pattern Recogn Lett 28:1151–1155. CrossRefGoogle Scholar
  39. 39.
    Sharma A, Paliwal KK (2015) Linear discriminant analysis for the small sample size problem: an overview. Int J Mach Learn Cybernetics 6:443–454. CrossRefGoogle Scholar
  40. 40.
    Sharma A, Paliwal KK (2012) A new perspective to null linear discriminant analysis method and its fast implementation using random matrix multiplication with scatter matrices. Pattern Recogn 45:2205–2213. CrossRefGoogle Scholar
  41. 41.
    Sharma A, Paliwal KK, Imoto S, Miyano S (2013) Principal component analysis using QR decomposition. Int J Mach Learn Cybernetics 4:679–683. CrossRefGoogle Scholar
  42. 42.
    Shin Y, Lee S, Ahn M, Cho H, Jun SC, Lee H-N (2015) Simple adaptive sparse representation based classification schemes for EEG based brain–computer interface applications. Comput Biol Med 66:29–38. CrossRefPubMedGoogle Scholar
  43. 43.
    Silvoni S, Ramos-Murguialday A, Cavinato M, Volpato C, Cisotto G, Turolla A, Piccione F, Birbaumer N (2011) Brain-computer interface in stroke: a review of progress. Clin EEG Neurosci 42:245–252. CrossRefPubMedGoogle Scholar
  44. 44.
    Sohrabpour A, Lu Y, Kankirawatana P, Blount J, Kim H, He B (2015) Effect of EEG electrode number on epileptic source localization in pediatric patients. Clin Neurophysiol 126:472–480. CrossRefPubMedGoogle Scholar
  45. 45.
    Suk HI, Lee SW (2013) A novel Bayesian framework for discriminative feature extraction in brain-computer interfaces. IEEE Trans Pattern Anal Mach Intell 35:286–299. CrossRefPubMedGoogle Scholar
  46. 46.
    Thomas KP, Cuntai G, Lau CT, Vinod AP, Keng AK (2009) A new discriminative common spatial pattern method for motor imagery brain computer interfaces. IEEE Trans Biomed Eng 56:2730–2733. CrossRefPubMedGoogle Scholar
  47. 47.
    Tomida N, Tanaka T, Ono S, Yamagishi M, Higashi H (2015) Active data selection for motor imagery EEG classification. IEEE Trans Biomed Eng 62:458–467. CrossRefPubMedGoogle Scholar
  48. 48.
    Wang H, Zhang Y, Waytowich NR, Krusienski DJ, Zhou G, Jin J, Wang X, Cichocki A (2016) Discriminative feature extraction via multivariate linear regression for SSVEP-based BCI. IEEE Trans Neural Syst Rehabil Eng 24:532–541. CrossRefPubMedGoogle Scholar
  49. 49.
    Wei Q, Wei Z (2015) Binary particle swarm optimization for frequency band selection in motor imagery based brain-computer interfaces. Bio-Med Mater Eng 26:S1523–S1532. CrossRefGoogle Scholar
  50. 50.
    Widmann A, Schröger E (2012) Filter effects and filter artifacts in the analysis of electrophysiological data. Front Psychol 3.
  51. 51.
    Woehrle H, Krell MM, Straube S, Kim SK, Kirchner EA, Kirchner F (2015) An adaptive spatial filter for user-independent single trial detection of event-related potentials. IEEE Trans Biomed Eng 62:1696–1705. CrossRefPubMedGoogle Scholar
  52. 52.
    Xu Y, Fan P, Yuan L (2013) A simple and efficient artificial bee colony algorithm. Mathematical Probl Eng 9. doi: Google Scholar
  53. 53.
    Yu T, Xiao J, Wang F, Zhang R, Gu Z, Cichocki A, Li Y (2015) Enhanced motor imagery training using a hybrid BCI with feedback. IEEE Trans Biomed Eng 62:1706–1717. CrossRefPubMedGoogle Scholar
  54. 54.
    Zhang Y, Wang Y, Jin J, Wang X (2017) Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification. Int J Neural Syst 27:1650032. CrossRefPubMedGoogle Scholar
  55. 55.
    Zhang Y, Wang Y, Zhou G, Jin J, Wang B, Wang X, Cichocki A (2018) Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces. Expert Syst Appl 96:302–310. CrossRefGoogle Scholar
  56. 56.
    Zhang Y, Zhou G, Jin J, Wang X, Cichocki A (2015) Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface. J Neurosci Methods 255:85–91. CrossRefPubMedGoogle Scholar
  57. 57.
    Zhang Y, Zhou G, Jin J, Zhao Q, Wang X, Cichocki A (2016) Sparse Bayesian classification of EEG for brain computer interface. IEEE Trans Neural Netw Learn syst 27:2256–2267. CrossRefPubMedGoogle Scholar
  58. 58.
    Zhou G, Zhao Q, Zhang Y, Adalı T, Xie S, Cichocki A (2016) Linked component analysis from matrices to high-order tensors: applications to biomedical data. Proc IEEE 104:310–331. CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2018

Authors and Affiliations

  1. 1.Department of Electronics, Instrumentation & Control Engineering, School of Electrical & Electronics EngineeringFiji National UniversitySamabulaFiji
  2. 2.School of Engineering and Physics, Faculty of Science, Technology & EnvironmentThe University of the South PacificSuvaFiji
  3. 3.Institute for Integrated and Intelligent Systems (IIIS)Griffith UniversityBrisbaneAustralia
  4. 4.Laboratory for Medical Science MathematicsRIKEN Center for Integrative Medical SciencesYokohamaJapan

Personalised recommendations