Advertisement

Fast in silico assessment of physical stress for peripheral nerves

  • Elisabetta Giannessi
  • Maria Rita Stornelli
  • Pier Nicola Sergi
Original Article
  • 47 Downloads

Abstract

The level of physical stress rules the adaptative response of peripheral nerves, which is crucial to assess their physiological and pathological states. To this aim, in this work, different computational approaches were presented to model the stress response of in vitro peripheral nerves undergoing longitudinal stretch. More specifically, the effects of geometrical simplifications were studied with respect to the amount of computational time needed to obtain relevant information. Similarly, the variation of compressibility of the peripheral nervous tissue was investigated with respect to the variation of longitudinal stress and transversal stretch variations, and with reference to the computational time needed for simulations. Finally, the effect of small dimensional changes was investigated to better understand whether the variation of time was only due to the amount of nodes or elements. In conclusion, since fast in silico models, able to assess the nerve stress, could be a strategic advantage in case of time constraints or on-line evaluation (e.g., surgical interventions), a synergistic use of these approaches was proposed as a possible strategy to decrease the computational time needed for simulations from minutes to seconds.

Graphical Abstract

A synergistic approach involving both symmetry and tuning of compressibility allows the computational time to be considerably decreased

Keywords

Peripheral nerves Physical stress Fast in silico models 

Notes

Acknowledgements

The authors thank the company “Desideri Luciano s.r.l” for biological specimens and Dr. Cesare Temporin for his valuable technical assistance in handling and dissection of peripheral nerves.

Supplementary material

11517_2018_1794_MOESM1_ESM.pdf (191 kb)
(PDF 191 KB)
11517_2018_1794_MOESM2_ESM.pdf (177 kb)
(PDF 176 KB)

References

  1. 1.
    Alexander MJ, Barkmeier-Kraemer JM, Vande Geest JP (2010) Biomechanical properties of recurrent laryngeal nerve in the piglet. Ann Biomed Eng 38(8):2553–2562.  https://doi.org/10.1007/s10439-010-0013-7 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Anderson AE, Peters CL, Tuttle BD, Weiss JA (2005) Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J Biomech Eng 127(3):364–373.  https://doi.org/10.1115/1.1894148 CrossRefPubMedGoogle Scholar
  3. 3.
    Bell MA, Weddell AG (1984) A descriptive study of the blood vessels of the sciatic nerve in the rat, man and other mammals. Brain 107(Pt 3):871–898CrossRefPubMedGoogle Scholar
  4. 4.
    Caouette C, Ikin N, Villemure I, Arnoux PJ, Rauch F, Aubin CÉ (2017) Geometry reconstruction method for patient-specific finite element models for the assessment of tibia fracture risk in osteogenesis imperfecta. Med Biol Eng Comput 55(4):549–560.  https://doi.org/10.1007/s11517-016-1526-5 CrossRefPubMedGoogle Scholar
  5. 5.
    Carpaneto J, Cutrone A, Bossi S, Sergi PN, Citi L, Rigosa J, Rossini P, Micera S (2011) Activities on pns neural interfaces for the control of hand prostheses. In: 2011 annual international conference of the IEEE engineering in medicine and biology society, EMBC, pp 4637–4640.  https://doi.org/10.1109/IEMBS.2011.6091148
  6. 6.
    Ciofani G, Sergi PN, Carpaneto J, Micera S (2011) A hybrid approach for the control of axonal outgrowth: preliminary simulation results. Med Biol Eng Comput 49(2):163–170.  https://doi.org/10.1007/s11517-010-0687-x CrossRefPubMedGoogle Scholar
  7. 7.
    Clarke E, Bearn JG (1972) The spiral nerve bands of fontana. Brain 95 (1):1–20.  https://doi.org/10.1093/brain/95.1.1 CrossRefPubMedGoogle Scholar
  8. 8.
    Cutrone A, Sergi PN, Bossi S, Micera S (2011) Modelization of a self-opening peripheral neural interface: a feasibility study. Med Eng Phys 33(10):1254–1261.  https://doi.org/10.1016/j.medengphy.2011.06.001 CrossRefPubMedGoogle Scholar
  9. 9.
    Dilley A, Lynn B, Greening J, DeLeon N (2003) Quantitative in vivo studies of median nerve sliding in response to wrist, elbow, shoulder and neck movements. Clin Biomech 18(10):899–907.  https://doi.org/10.1016/S0268-0033(03)00176-1. http://www.sciencedirect.com/science/article/pii/S0268003303001761 CrossRefGoogle Scholar
  10. 10.
    Dilley A, Summerhayes C, Lynn B (2007) An in vivo investigation of ulnar nerve sliding during upper limb movements. Clin Biomech 22(7):774–779.  https://doi.org/10.1016/j.clinbiomech.2007.04.004. http://www.sciencedirect.com/science/article/pii/S0268003307000691 CrossRefGoogle Scholar
  11. 11.
    Duchemin L, Mitton D, Jolivet E, Bousson V, Laredo JD, Skalli W (2008) An anatomical subject-specific fe-model for hip fracture load prediction. Comput Methods Biomech Biomed Engin 11(2):105–111.  https://doi.org/10.1080/10255840701535965. PMID: 17891675CrossRefPubMedGoogle Scholar
  12. 12.
    Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New YorkGoogle Scholar
  13. 13.
    Galardi G, Comi G, Lozza L, Marchettini P, Novarina M, Facchini R, Paronzini A (1990) Peripheral nerve damage during limb lengthening. neurophysiology in five cases of bilateral tibial lengthening. Bone & Joint Journal 72-B(1):121–124. http://bjj.boneandjoint.org.uk/content/72-B/1/121 Google Scholar
  14. 14.
    Gardiner JC, Weiss JA (2003) Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. J Orthop Res 21(6):1098–1106.  https://doi.org/10.1016/S0736-0266(03)00113-X CrossRefPubMedGoogle Scholar
  15. 15.
    Giannessi E, Stornelli MR, Sergi PN (2017) A unified approach to model peripheral nerves across different animal species. PeerJ 5:e4005.  https://doi.org/10.7717/peerj.4005 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gubin AV, Borzunov DY, Malkova TA (2013) The ilizarov paradigm: thirty years with the ilizarov method, current concerns and future research. Int Orthop 37(8):1533–1539.  https://doi.org/10.1007/s00264-013-1935-0 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Haninec P (1986) Undulating course of nerve fibres and bands of fontana in peripheral nerves of the rat. Anat Embryol 174(3):407–411.  https://doi.org/10.1007/BF00698791 CrossRefPubMedGoogle Scholar
  18. 18.
    Ma Z, Hu S, Tan JS, Myer C, Njus NM, Xia Z (2013) In vitro and in vivo mechanical properties of human ulnar and median nerves. J Biomed Mater Res A 101(9):2718–2725.  https://doi.org/10.1002/jbm.a.34573 CrossRefPubMedGoogle Scholar
  19. 19.
    Main EK, Goetz JE, Rudert MJ, Goreham-Voss CM, Brown TD (2011) Apparent transverse compressive material properties of the digital flexor tendons and the median nerve in the carpal tunnel. J Biomech 44(5):863–868.  https://doi.org/10.1016/j.jbiomech.2010.12.005 CrossRefPubMedGoogle Scholar
  20. 20.
    Marchelli GLS, Ledoux WR, Isvilanonda V, Ganter MA, Storti DW (2014) Joint-specific distance thresholds for patient-specific approximations of articular cartilage modeling in the first ray of the foot. Med Biol Eng Comput 52(9):773–779.  https://doi.org/10.1007/s11517-014-1179-1 CrossRefPubMedGoogle Scholar
  21. 21.
    Merolli A (2016) Modelling peripheral nerve from studies on “the bands of fontana” and on “artificial nerve-guides” suggests a new recovery mechanism which can concur with brain plasticity. Am J Neuroprot Neuroregener 8(1):45–53.  https://doi.org/10.1166/ajnn.2016.1123 CrossRefGoogle Scholar
  22. 22.
    Merolli A, Mingarelli L, Rocchi L (2012) A more detailed mechanism to explain the bands of fontana in peripheral nerves. Muscle Nerve 46(4):540–547.  https://doi.org/10.1002/mus.23422 CrossRefPubMedGoogle Scholar
  23. 23.
  24. 24.
    Millesi H, Zöch G, Reihsner R (1995) Mechanical properties of peripheral nerves. Clin Orthop Relat Res (314):76–83. http://europepmc.org/abstract/MED/7634654
  25. 25.
    Mueller MJ, Maluf KS (2002) Tissue adaptation to physical stress: a proposed physical stress theory to guide physical therapist practice, education, and research. Phys Ther 82(4):383–403. http://ptjournal.apta.org/content/82/4/383.abstract PubMedGoogle Scholar
  26. 26.
    Pomwenger W, Entacher K, Resch H, Schuller-Götzburg P (2015) Multi-patient finite element simulation of keeled versus pegged glenoid implant designs in shoulder arthroplasty. Med Biol Eng Comput 53(9):781–790.  https://doi.org/10.1007/s11517-015-1286-7 CrossRefPubMedGoogle Scholar
  27. 27.
    Roccasalvo IM, Micera S, Sergi PN (2015) A hybrid computational model to predict chemotactic guidance of growth cones. Sci Rep 5:11,340.  https://doi.org/10.1038/srep11340 CrossRefGoogle Scholar
  28. 28.
    Sergi PN, Carrozza MC, Dario P, Micera S (2006) Biomechanical characterization of needle piercing into peripheral nervous tissue. IEEE Trans Biomed Eng 53(11):2373–2386.  https://doi.org/10.1109/TBME.2006.879463 CrossRefPubMedGoogle Scholar
  29. 29.
    Sergi PN, Cavalcanti-Adam EA (2017) Biomaterials and computation: a strategic alliance to investigate emergent responses of neural cells. Biomater Sci 5:648–657.  https://doi.org/10.1039/C6BM00871B CrossRefPubMedGoogle Scholar
  30. 30.
    Sergi PN, Jensen W, Micera S, Yoshida K (2012) In vivo interactions between tungsten microneedles and peripheral nerves. Med Eng Phys 34(6):747–755.  https://doi.org/10.1016/j.medengphy.2011.09.019 CrossRefPubMedGoogle Scholar
  31. 31.
    Sergi PN, Jensen W, Yoshida K (2016) Interactions among biotic and abiotic factors affect the reliability of tungsten microneedles puncturing in vitro and in vivo peripheral nerves: a hybrid computational approach. Mater Sci Eng C 59:1089–1099.  https://doi.org/10.1016/j.msec.2015.11.022. http://www.sciencedirect.com/science/article/pii/S0928493115305531 CrossRefGoogle Scholar
  32. 32.
    Sergi PN, Marino A, Ciofani G (2015) Deterministic control of mean alignment and elongation of neuron-like cells by grating geometry: a computational approach. Integr Biol 7:1242–1252.  https://doi.org/10.1039/C5IB00045A CrossRefGoogle Scholar
  33. 33.
    Sergi PN, Morana Roccasalvo I, Tonazzini I, Cecchini M, Micera S (2013) Cell guidance on nanogratings: a computational model of the interplay between pc12 growth cones and nanostructures. PLoS One 8 (8):e70,304.  https://doi.org/10.1371/journal.pone.0070304 CrossRefGoogle Scholar
  34. 34.
    Shim VB, Fernandez JW, Gamage PB, Regnery C, Smith DW, Gardiner BS, Lloyd DG, Besier TF (2014) Subject-specific finite element analysis to characterize the influence of geometry and material properties in achilles tendon rupture. J Biomech 47(15):3598–3604.  https://doi.org/10.1016/j.jbiomech.2014.10.001. http://www.sciencedirect.com/science/article/pii/S002192901400520X CrossRefPubMedGoogle Scholar
  35. 35.
    Smith J (1966) Factors influencing nerve repair: i. blood supply of peripheral nerves. Arch Surg 93(2):335–341.  https://doi.org/10.1001/archsurg.1966.01330020127022 CrossRefPubMedGoogle Scholar
  36. 36.
    Smith J (1966) Factors influencing nerve repair: Ii. collateral circulation of peripheral nerves. Arch Surg 93 (3):433–437.  https://doi.org/10.1001/archsurg.1966.01330030063014 CrossRefPubMedGoogle Scholar
  37. 37.
    Stanton-Hicks M (2009) Chapter 29 - peripheral nerve stimulation for pain peripheral neuralgia and complex regional pain syndrome. In: Krames ES, Peckham PH, Rezai AR (eds) Neuromodulation.  https://doi.org/10.1016/B978-0-12-374248-3.00030-6. https://www.sciencedirect.com/science/article/pii/B9780123742483000306. Academic Press, San Diego, pp 397–407
  38. 38.
    Sunderland S (1945) The intraneural topography of the radial, median and ulnar nerves. Brain 68:243–299CrossRefPubMedGoogle Scholar
  39. 39.
    Sunderland S (1965) The connective tissues of peripheral nerves. Brain 88(4):841–854CrossRefPubMedGoogle Scholar
  40. 40.
    Tarjuelo-Gutierrez J, Rodriguez-Vila B, Pierce DM, Fastl TE, Verbrugghe P, Fourneau I, Maleux G, Herijgers P, Holzapfel GA, Gomez EJ (2014) High-quality conforming hexahedral meshes of patient-specific abdominal aortic aneurysms including their intraluminal thrombi. Med Biol Eng Comput 52 (2):159–168.  https://doi.org/10.1007/s11517-013-1127-5 CrossRefPubMedGoogle Scholar
  41. 41.
    Topp KS, Boyd BS (2006) Structure and biomechanics of peripheral nerves: nerve responses to physical stresses and implications for physical therapist practice. Phys Ther 86(1):92–109CrossRefPubMedGoogle Scholar
  42. 42.
    Williams MJ, Utzinger U, Barkmeier-Kraemer JM, Vande Geest JP (2014) Differences in the microstructure and biomechanical properties of the recurrent laryngeal nerve as a function of age and location. J Biomech Eng 136 (8):0810,081–0810,089. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4056420/ CrossRefGoogle Scholar
  43. 43.
    Yoshida K, Lewinsky I, Nielsen M, Hylleberg M (2007) Implantation mechanics of tungsten microneedles into peripheral nerve trunks. Med Biol Eng Comput 45(4):413–420.  https://doi.org/10.1007/s11517-007-0175-0 CrossRefPubMedGoogle Scholar
  44. 44.
    Zachary LS, Dellon ES, Nicholas EM, Dellon AL (1993) The structural basis of felice fontana’s spiral bands and their relationship to nerve injury. J Reconstr Microsurg 9(02):131–138CrossRefPubMedGoogle Scholar
  45. 45.
    Zochodne DW, Low PA (1990) Adrenergic control of nerve blood flow. Exp Neurol 109(3):300–307CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2018

Authors and Affiliations

  • Elisabetta Giannessi
    • 1
  • Maria Rita Stornelli
    • 1
  • Pier Nicola Sergi
    • 2
  1. 1.Department of Veterinary ScienceUniversity of PisaPisaItaly
  2. 2.Translational Neural Engineering Area, The Biorobotics InstituteSant’Anna School of Advanced StudiesPontederaItaly

Personalised recommendations