Higher order total variation regularization for EIT reconstruction


Electrical impedance tomography (EIT) attempts to reveal the conductivity distribution of a domain based on the electrical boundary condition. This is an ill-posed inverse problem; its solution is very unstable. Total variation (TV) regularization is one of the techniques commonly employed to stabilize reconstructions. However, it is well known that TV regularization induces staircase effects, which are not realistic in clinical applications. To reduce such artifacts, modified TV regularization terms considering a higher order differential operator were developed in several previous studies. One of them is called total generalized variation (TGV) regularization. TGV regularization has been successively applied in image processing in a regular grid context. In this study, we adapted TGV regularization to the finite element model (FEM) framework for EIT reconstruction. Reconstructions using simulation and clinical data were performed. First results indicate that, in comparison to TV regularization, TGV regularization promotes more realistic images.

Reconstructed conductivity changes located on selected vertical lines. For each of the reconstructed images as well as the ground truth image, conductivity changes located along the selected left and right vertical lines are plotted. In these plots, the notation GT in the legend stands for ground truth, TV stands for total variation method, and TGV stands for total generalized variation method. Reconstructed conductivity distributions from the GREIT algorithm are also demonstrated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Adler A, Amato MB, Arnold JH, Bayford R, Bodenstein M, Böhm SH, Brown BH, Frerichs I, Stenqvist O, Weiler N (2012) Whither lung EIT: where are we, where do we want to go and what do we need to get there? Physiol Meas 33(5):679–694. https://doi.org/10.1088/0967-3334/33/5/679

    Article  PubMed  Google Scholar 

  2. 2.

    Adler A, Arnold JH, Bayford R, Borsic A, Brown B, Dixon P, Faes TJ, Frerichs I, Gagnon H, Gärber Y (2009) GREIT: a unified approach to 2D linear EIT reconstruction of lung images. Physiol Meas 30(6):S35–S55. https://doi.org/10.1088/0967-3334/30/6/S03

    Article  PubMed  Google Scholar 

  3. 3.

    Adler A, Lionheart WR (2006) Uses and abuses of EIDORS: an extensible software base for EIT. Physiol Meas 27(5):S25–S42. https://doi.org/10.1088/0967-3334/27/5/S03

    Article  PubMed  Google Scholar 

  4. 4.

    Borsic A, Graham BM, Adler A, Lionheart WR (2010) In vivo impedance imaging with total variation regularization. IEEE Trans Med Imaging 29(1):44–54. https://doi.org/10.1109/TMI.2009.2022540

    Article  PubMed  Google Scholar 

  5. 5.

    Bredies K, Kunisch K, Pock T (2010) Total generalized variation. SIAM Journal on Imaging Sciences 3(3):492–526. https://doi.org/10.1137/090769521

    Article  Google Scholar 

  6. 6.

    Chambolle A, Lions P-L (1997) Image recovery via total variation minimization and related problems. Numer Math 76(2):167–188. https://doi.org/10.1007/s002110050258

    Article  Google Scholar 

  7. 7.

    Chan T, Marquina A, Mulet P (2000) High-order total variation-based image restoration. SIAM J Sci Comput 22(2):503–516. https://doi.org/10.1137/S1064827598344169

    Article  Google Scholar 

  8. 8.

    Chan TF, Esedoglu S, Park F A fourth order dual method for staircase reduction in texture extraction and image restoration problems. In: 2010 I.E. International Conference on Image Processing, 2010. IEEE, pp 4137–4140

  9. 9.

    Frerichs I, Amato MB, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, Bodenstein M, Gagnon H, Böhm SH, Teschner E (2016) Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax:thoraxjnl-2016-208357

  10. 10.

    Frerichs I, Dudykevych T, Hinz J, Bodenstein M, Hahn G, Hellige G (2001) Gravity effects on regional lung ventilation determined by functional EIT during parabolic flights. J Appl Physiol 91(1):39–50. https://doi.org/10.1152/jappl.2001.91.1.39

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Goldstein T, Osher S (2009) The Split Bregman method for L1-regularized problems. SIAM J Imaging Sci 2(2):323–343. https://doi.org/10.1137/080725891

    Article  Google Scholar 

  12. 12.

    Gong B, Schullcke B, Krueger-Ziolek S, Mueller-Lisse U, Moeller K (2016) Sparse regularization for EIT reconstruction incorporating structural information derived from medical imaging. Physiol Meas 37(6):843–862. https://doi.org/10.1088/0967-3334/37/6/843

    Article  PubMed  Google Scholar 

  13. 13.

    Hansen PC, O’Leary DP (1993) The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput 14(6):1487–1503. https://doi.org/10.1137/0914086

    Article  Google Scholar 

  14. 14.

    Holder DS (2004) Electrical impedance tomography: methods, history and applications. CRC Press, DOI: https://doi.org/10.1201/9781420034462,

  15. 15.

    Knoll F, Bredies K, Pock T, Stollberger R (2011) Second order total generalized variation (TGV) for MRI. Magn Reson Med 65(2):480–491. https://doi.org/10.1002/mrm.22595

    Article  PubMed  Google Scholar 

  16. 16.

    Krueger-Ziolek S, Schullcke B, Zhao Z, Gong B, Naehrig S, Müller-Lisse U, Moeller K (2016) Multi-layer ventilation inhomogeneity in cystic fibrosis. Respir Physiol Neurobiol 233:25–32. https://doi.org/10.1016/j.resp.2016.07.010

    Article  PubMed  Google Scholar 

  17. 17.

    Mamatjan Y, Borsic A, Gürsoy D, Adler A (2013) An experimental clinical evaluation of EIT imaging with ℓ1 data and image norms. Physiol Meas 34(9):1027–1039. https://doi.org/10.1088/0967-3334/34/9/1027

    Article  PubMed  Google Scholar 

  18. 18.

    Mueller JL, Siltanen S (2012) Linear and nonlinear inverse problems with practical applications. SIAM, DOI: https://doi.org/10.1137/1.9781611972344,

  19. 19.

    Ono S, Yamada I, Kumazawa I (2015).Total generalized variation for graph signals. In: 2015 I.E. International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp 5456–5460

  20. 20.

    Zhao Z, Fischer R, Frerichs I, Müller-Lisse U, Möller K (2012) Regional ventilation in cystic fibrosis measured by electrical impedance tomography. J Cyst Fibros 11(5):412–418. https://doi.org/10.1016/j.jcf.2012.03.011

    Article  PubMed  Google Scholar 

Download references


This work is partially supported by the German Federal Ministry of Education and Research (BMBF) under grant no. 03FH038I3 (MOSES).

Author information



Corresponding author

Correspondence to Bo Gong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gong, B., Schullcke, B., Krueger-Ziolek, S. et al. Higher order total variation regularization for EIT reconstruction. Med Biol Eng Comput 56, 1367–1378 (2018). https://doi.org/10.1007/s11517-017-1782-z

Download citation


  • Electrical impedance tomography
  • Total generalized variation
  • Inverse problem