Skip to main content

Advertisement

Log in

Automated breast tumor detection and segmentation with a novel computational framework of whole ultrasound images

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Due to the low contrast and ambiguous boundaries of the tumors in breast ultrasound (BUS) images, it is still a challenging task to automatically segment the breast tumors from the ultrasound. In this paper, we proposed a novel computational framework that can detect and segment breast lesions fully automatic in the whole ultrasound images. This framework includes several key components: pre-processing, contour initialization, and tumor segmentation. In the pre-processing step, we applied non-local low-rank (NLLR) filter to reduce the speckle noise. In contour initialization step, we cascaded a two-step Otsu-based adaptive thresholding (OBAT) algorithm with morphologic operations to effectively locate the tumor regions and initialize the tumor contours. Finally, given the initial tumor contours, the improved Chan-Vese model based on the ratio of exponentially weighted averages (CV-ROEWA) method was utilized. This pipeline was tested on a set of 61 breast ultrasound (BUS) images with diagnosed tumors. The experimental results in clinical ultrasound images prove the high accuracy and robustness of the proposed framework, indicating its potential applications in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Mustra M, Grgic M, Rangayyan RM (2016) Review of recent advances in segmentation of the breast boundary and the pectoral muscle in mammograms. Med Biol Eng Comput 54(7):1003–1024. https://doi.org/10.1007/s11517-015-1411-7

    Article  PubMed  Google Scholar 

  2. Anitha J, Peter JD (2015) Mammogram segmentation using maximal cell strength updation in cellular automata. Med Biol Eng Comput 53(8):737–749. https://doi.org/10.1007/s11517-015-1280-0

    Article  CAS  PubMed  Google Scholar 

  3. Chang RF, WJ W, Moon WK, Chen DR (2005) Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors. Breast Cancer Res Treat 89(2):179–185. https://doi.org/10.1007/s10549-004-2043-z

    Article  PubMed  Google Scholar 

  4. Drukker K, Giger ML, Horsch K, Kupinski MA, Vyborny CJ, Mendelson EB (2002) Computerized lesion detection on breast ultrasound. Med Phys 29(7):1438–1446. https://doi.org/10.1118/1.1485995

    Article  PubMed  Google Scholar 

  5. Joo S, Yang YS, Moon WK, Kim HC (2004) Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features. IEEE Trans Med Imaging 23(10):1292–1300. https://doi.org/10.1109/TMI.2004.834617

    Article  PubMed  Google Scholar 

  6. Horsch K, Giger ML, Venta LA, Vyborny CJ (2002) Computerized diagnosis of breast lesions on ultrasound. Med Phys 29(2):157–164. https://doi.org/10.1118/1.1429239

    Article  PubMed  Google Scholar 

  7. Huang YL, Chen DR (2004) Watershed segmentation for breast tumor in 2-D sonography. Ultrasound Med Biol 30(5):625–632. https://doi.org/10.1016/j.ultrasmedbio.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  8. Gomez W, Leija L, Alvarenga AV, Infantosi AFC, Pereira WCA (2010) Computerized lesion segmentation of breast ultrasound based on marker-controlled watershed transformation. Med Phys 37(1):82–95. https://doi.org/10.1118/1.3265959

    Article  CAS  PubMed  Google Scholar 

  9. Boukerroui D, Basset O, Guerin N, Baskurt A (1998) Multiresolution texture based adaptive clustering algorithm for breast lesion segmentation. Eur J Ultrasound 8(2):135–144. https://doi.org/10.1016/S0929-8266(98)00062-7

    Article  CAS  PubMed  Google Scholar 

  10. Huang QH, Lee SY, Liu LZ, MH L, Jin LW, Li AH (2012) A robust graph-based segmentation method for breast tumors in ultrasound images. Ultrasonics 52(2):266–275. https://doi.org/10.1016/j.ultras.2011.08.011

    Article  PubMed  Google Scholar 

  11. Huang YL, Jiang YR, Chen DR, Moon WK (2007) Level set contouring for breast tumor in sonography. J Digit Imaging 20(3):238–247. https://doi.org/10.1007/s10278-006-1041-6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li C, Xu C, Gui C, Fox MD (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 19(12):3243–3254. https://doi.org/10.1109/TIP.2010.2069690

    Article  PubMed  Google Scholar 

  13. Madabhushi A, Metaxas DN (2003) Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions. IEEE Trans Med Imaging 22(2):155–169. https://doi.org/10.1109/TMI.2002.808364

    Article  PubMed  Google Scholar 

  14. Liu X, Huo Z, Zhang J (2006) Automated segmentation of breast lesions in ultrasound images. In: 27th Annual International Conference of the IEEE-EMBS, pp 7433–7435

  15. Shan J, Cheng HD, Wang Y (2012) Completely automated segmentation approach for breast ultrasound images using multiple-domain features. Ultrasound Med Biol 38(2):262–275. https://doi.org/10.1016/j.ultrasmedbio.2011.10.022

    Article  PubMed  Google Scholar 

  16. Xian M, Zhang Y, Cheng HD (2015) Fully automatic segmentation of breast ultrasound images based on breast characteristics in space and frequency domains. Pattern Recogn 48(2):485–497. https://doi.org/10.1016/j.patcog.2014.07.026

    Article  Google Scholar 

  17. Zhu L, Fu CW, Brown MS, Heng PA (2017) A non-local low-rank framework for ultrasound speckle reduction. In: 2017 I.E. Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’17), PP 5650–5658

  18. Yu Y, Acton ST (2002) Speckle reducing anisotropic diffusion. IEEE Trans Image Process 11(11):1260–1270. https://doi.org/10.1109/TIP.2002.804276

    Article  PubMed  Google Scholar 

  19. Cardoso FM, Matsumoto MM, Furuie SS (2012) Edge-preserving speckle texture removal by interference-based speckle filtering followed by anisotropic diffusion. Ultrasound Med Biol 38(8):1414–1428. https://doi.org/10.1016/j.ultrasmedbio.2012.03.014

    Article  PubMed  Google Scholar 

  20. Flores WG, Pereira WCA, Infantosi AFC (2014) Breast ultrasound despeckling using anisotropic diffusion guided by texture descriptors. Ultrasound Med Biol 40(11):2609–2621. https://doi.org/10.1016/j.ultrasmedbio.2014.06.005

    Article  Google Scholar 

  21. Zhu L, Wang W, Qin J, Wong KH, Choi KS, Heng PA (2017) Fast feature-preserving speckle reduction for ultrasound images via phase congruency. Signal Process 134:275–284. https://doi.org/10.1016/j.sigpro.2016.12.011

    Article  Google Scholar 

  22. Mittal D, Kumar V, Saxena SC, Khandelwal N, Kalra N (2010) Enhancement of the ultrasound images by modified anisotropic diffusion method. Med Biol Eng Comput 48(12):1281–1291. https://doi.org/10.1007/s11517-010-0650-x

    Article  PubMed  Google Scholar 

  23. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66. https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  24. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277. https://doi.org/10.1109/83.902291

    Article  CAS  PubMed  Google Scholar 

  25. Loizou CP, Pattichis CS, Pantziaris M, Tyllis T, Nicolaides A (2007) Snakes based segmentation of the common carotid artery intima media. Med Biol Eng Comput 45(1):35–49. https://doi.org/10.1007/s11517-006-0140-3

    Article  CAS  PubMed  Google Scholar 

  26. Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42(5):577–685. https://doi.org/10.1002/cpa.3160420503

    Article  Google Scholar 

  27. Li C, Xu C, Gui C, Fox MD (2005) Level set evolution without re-initialization: a new variational formulation. In: 2005 I.E. Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp 430–436

  28. Fjortoft R, Lopes A, Marthon P, Cubero-Castan E (1998) An optimal multiedge detector for SAR image segmentation. IEEE Trans Geosci Remote Sens 36(3):793–802. https://doi.org/10.1109/36.673672

    Article  Google Scholar 

  29. Rodrigues R, Braz R, Pereira M, Moutinho J, Pinheiro AM (2015) A two-step segmentation method for breast ultrasound masses based on multi-resolution analysis. Ultrasound Med Biol 41(6):1737–1748. https://doi.org/10.1016/j.ultrasmedbio.2015.01.012

    Article  PubMed  Google Scholar 

  30. Xu X, Niemeijer M, Song Q, Sonka M, Garvin MK, Reinhardt JM, Abràmoff MD (2011) Vessel boundary delineation on fundus images using graph-based approach. IEEE Trans Med Imaging 30(6):1184–1191. https://doi.org/10.1109/TMI.2010.2103566

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huang YL, Chen DR, Jiang YR, Kuo SJ, Wu HK, Moon WK (2008) Computer-aided diagnosis using morphological features for classifying breast lesions on ultrasound. Ultrasound Obstet Gynecol 32(4):565–572. https://doi.org/10.1002/uog.5205

    Article  PubMed  Google Scholar 

  32. Wu WJ, Moon WK (2008) Ultrasound breast tumor image computer-aided diagnosis with texture and morphological features. Acad Radiol 15(7):873–880

    Article  PubMed  Google Scholar 

  33. Moon WK, Chen IL, Chang JM, Shin SU, Lo CM, Chang RF (2017) The adaptive computer-aided diagnosis system based on tumor sizes for the classification of breast tumors detected at screening ultrasound. Ultrasonics 76:70–77. https://doi.org/10.1016/j.ultras.2016.12.017

    Article  PubMed  Google Scholar 

  34. Elawady M, Sadek I, Shabayek AER, Pons G, Ganau S (2016) Automatic nonlinear filtering and segmentation for breast ultrasound images. In: International conference image analysis and recognition. Springer International Publishing, Switzerland, pp 206–213. https://doi.org/10.1007/978-3-319-41501-7_24

    Chapter  Google Scholar 

  35. Wu J, Li B, Sun X, Cao G, Rubin DL, Napel S, Ikeda DM, Kurian AW, Li R (2017) Heterogeneous enhancement patterns of tumor-adjacent parenchyma at MR imaging are associated with dysregulated signaling pathways and poor survival in breast cancer. Radiology 285(2):401–413. https://doi.org/10.1148/radiol.2017162823

    Article  PubMed  Google Scholar 

  36. Wu J, Cui Y, Sun X, Cao G, Li B, Ikeda DM, Kurian AW, Li R (2017) Unsupervised clustering of quantitative image phenotypes reveals breast cancer subtypes with distinct prognoses and molecular pathways. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-16-2415

  37. Wu J, Sun X, Wang J, Cui Y, Kato F, Shirato H, Ikeda DM, Li R (2017) Identifying relations between imaging phenotypes and molecular subtypes of breast cancer: model discovery and external validation. J Magn Reson Imaging. https://doi.org/10.1002/jmri.25661

  38. Wu J, Gong G, Cui Y, Li R (2016) Intratumor partitioning and texture analysis of dynamic contrast-enhanced (DCE)-MRI identifies relevant tumor subregions to predict pathological response of breast cancer to neoadjuvant chemotherapy. J Magn Reson Imaging 44(5):1107–1115. https://doi.org/10.1002/jmri.25279

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ertas G, Doran SJ, Leach MO (2017) A computerized volumetric segmentation method applicable to multi-centre MRI data to support computer-aided breast tissue analysis, density assessment and lesion localization. Med Biol Eng Comput 55(1):57–68. https://doi.org/10.1007/s11517-016-1484-y

    Article  PubMed  Google Scholar 

Download references

Funding

This work is partially supported by grants from the National Natural Science Foundation of China (NSFC: 61401451, 61501444, 61472411), Guangdong Province Science and Technology Plan Projects (Grant No. 2015B020233004), and Shenzhen Technology Research Project (Grant No. JSGG20160429192140681, JCYJ20160429174611494).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Wu or Jia Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Li, K., Qin, W. et al. Automated breast tumor detection and segmentation with a novel computational framework of whole ultrasound images. Med Biol Eng Comput 56, 183–199 (2018). https://doi.org/10.1007/s11517-017-1770-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1770-3

Keywords

Navigation