Skip to main content

New complexity measures reveal that topographic loops of human alpha phase potentials are more complex in drowsy than in wake

Abstract

A number of measures, stemming from nonlinear dynamics, exist to estimate complexity of biomedical objects. In most cases they are appropriate, but sometimes unconventional measures, more suited for specific objects, are needed to perform the task. In our present work, we propose three new complexity measures to quantify complexity of topographic closed loops of alpha carrier frequency phase potentials (CFPP) of healthy humans in wake and drowsy states. EEG of ten adult individuals was recorded in both states, using a 14-channel montage. For each subject and each state, a topographic loop (circular directed graph) was constructed according to CFPP values. Circular complexity measure was obtained by summing angles which directed graph edges (arrows) form with the topographic center. Longitudinal complexity was defined as the sum of all arrow lengths, while intersecting complexity was introduced by counting the number of intersections of graph edges. Wilcoxon’s signed-ranks test was used on the sets of these three measures, as well as on fractal dimension values of some loop properties, to test differences between loops obtained in wake vs. drowsy. While fractal dimension values were not significantly different, longitudinal and intersecting complexities, as well as anticlockwise circularity, were significantly increased in drowsy.

An example of closed topographic carrier frequency phase potential (CFPP) loops, recorded in one of the subjects in the wake (A) and drowsy (C) states. Lengths of loop graph edges, r(c j, c j + 1), plotted against the series of EEG channels with decreasing CFPP values, c j , in the wake (B) and drowsy (D) states. Conventional fractal analysis did not reveal any difference between them; therefore, three new complexity measures were introduced.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Accardo A, Affinito M, Carrozzi M, Bouquet F (1997) Use of the fractal dimension for the analysis of electroencephalographic time series. Biol Cybern 77:339–350

    Article  PubMed  CAS  Google Scholar 

  2. Acharya RU, Faust O, Kannathal N, Chua T, Laxminarayan S (2005) Non-linear analysis of EEG signals at various sleep stages. Comput Methods Prog Biomed 80:37–45

    Article  Google Scholar 

  3. Berwanger D, Grädel E (2005) Entanglement—a measure for the complexity of directed graphs with applications to logic and games. In: Baader F, Voronkov A (eds) Volume 3452 of the series Lecture Notes in Computer Science. Springer, Berlin, pp 209–223

    Google Scholar 

  4. Bojić T, Vuckovic A, Kalauzi A (2010) Modeling EEG fractal dimension changes in wake and drowsy states in humans—a preliminary study. J Theor Biol 262(2):214–222

    Article  PubMed  Google Scholar 

  5. Boly M, Phillips C, Tshibanda L, Vanhaudenhuyse A, Schabus M, Dang-Vu TT, Moonen G, Hustinx R, Maquet P, Laureys S (2008) Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann N Y Acad Sci 1129(1):119–129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Boostani R, Karimzadeh F, Torabi-Nami M (2017) A comparative review on sleep stage classification methods in patients and healthy individuals. Comput Methods Prog Biomed 140:77–91. https://doi.org/10.1016/j.cmpb.2016.12.004

    Article  Google Scholar 

  7. Esteller R, Vachtsevanos G, Echauz J, Litt B (2001) A comparison of waveform fractal dimension algorithms. IEEE Trans Circuits Syst I: Fundam Theory Appl 48(2):177–183

    Article  Google Scholar 

  8. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102(27):9673–9678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Higuchi T (1988) Approach to an irregular time series on the basis of the fractal theory. Physica D 31:277–283

    Article  Google Scholar 

  10. Kalauzi A, Bojić T, Rakić LJ (2009) Extracting complexity waveforms from one-dimensional signals. Nonlinear Biomed Phys 3:8

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kalauzi A, Spasic S, Culic M, Grbic G, Martac LJ (2005) Consecutive differences as a method of signal fractal analysis. Fractals 13(4):283–292

    Article  Google Scholar 

  12. Kalauzi A, Vuckovic A, Bojić T (2012) EEG alpha phase shifts during transition from wakefulness to drowsiness. Int J Psychophysiol 86(3):195–205

    Article  PubMed  Google Scholar 

  13. Kalauzi A, Vuckovic A, Bojić T (2015) Topographic distribution of EEG alpha attractor correlation dimension values in wake and drowsy states in humans. Int J Psychophysiol 95(3):278–291

    Article  PubMed  Google Scholar 

  14. Katz M (1988) Fractals and the analysis of waveforms. Comput Biol Med 18(3):145–156

    Article  PubMed  CAS  Google Scholar 

  15. Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53:63–88

    Article  PubMed  Google Scholar 

  16. Koukkou M, Lehmann D, Wackermann J, Dvorak I, Henggeler B (1993) Dimensional complexity of EEG brain mechanisms in untreated schizophrenia. Biol Psychiatry 33(6):397–407

    Article  PubMed  CAS  Google Scholar 

  17. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208

    Article  PubMed  CAS  Google Scholar 

  18. Laufs H, Holt JL, Elfont R, Krams M, Paul JS, Krakow K, Kleinschmidt A (2006) Where the BOLD signal goes when alpha EEG leaves. NeuroImage 31(4):1408–1418

    Article  PubMed  CAS  Google Scholar 

  19. Lehmann D (1971) Multichannel topography of human alpha EEG fields. Electroencephalogr Clin Neurophysiol 31:439–449

    Article  PubMed  CAS  Google Scholar 

  20. Lehmann D, Ozaki H, Pal I (1987) EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol 67:271–288

    Article  PubMed  CAS  Google Scholar 

  21. Lutzenberger W, Elbert T, Birbaumer N, Ray WJ, Schupp HT (1992) The scalp distribution of fractal dimension of the EEG and its variation with mental task. Brain Topogr 5:27–34

    Article  PubMed  CAS  Google Scholar 

  22. Ma Y, Shi W, Peng C-K, Yang AC (2017) Nonlinear dynamical analysis of sleep electroencephalography using fractal and entropy approaches. Sleep Med Rev. https://doi.org/10.1016/j.smrv.2017.01.003

  23. Massimini M (2004) The sleep slow oscillation as a traveling wave. J Neurosci 24(31):6862–6870. https://doi.org/10.1523/JNEUROSCI.1318-04.2004

    Article  PubMed  CAS  Google Scholar 

  24. Natarajan K, Acharya R, Alias F, Tiboleng T, Puthusserypady SK (2004) Nonlinear analysis of EEG signals at different mental states. Biomed Eng Online 3(1):1

    Article  Google Scholar 

  25. Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115:2292–2307. https://doi.org/10.1016/j.clinph.2004.04.029

    Article  PubMed  Google Scholar 

  26. Nunez PL, Srinivasan R (2006) A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness. Clin Neurophysiol 117(11):2424–2435. https://doi.org/10.1016/j.clinph.2006.06.754

    Article  PubMed  PubMed Central  Google Scholar 

  27. Palva S, Palva JM (2007) New vistas for [alpha]-frequency band oscillations. Trends Neurosci 30:150–158

    Article  PubMed  CAS  Google Scholar 

  28. Petrosian A (1995) Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns, In: Computer-based medical systems, Proceedings of the Eighth IEEE Symposium on; IEEE, pp 212–217

  29. Pfurtscheller G, Cooper R (1975) Frequency dependence of the transmission of the EEG from cortex to scalp. Electroencephalogr Clin Neurophysiol 38(1):93–96

    Article  PubMed  CAS  Google Scholar 

  30. Preisl H, Lutzenberger W, Pulvermüller F, Birbaumer N (1997) Fractal dimension of short EEG time series in humans. Neurosci Lett 225:77–80

    Article  Google Scholar 

  31. Rezaei SSC (2013) Entropy and graphs, master thesis, University of Waterloo, Waterloo, Ontario, https://arxiv.org/pdf/1311.5632.pdf, Accessed 25 Aug 2017

  32. Soteros CE, Sumners DW, Whittington SG (1992) Entanglement complexity of graphs in Z 3. Math Proc Camb 111(01):75–91

    Article  Google Scholar 

  33. Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28:1178–1193. https://doi.org/10.1002/hbm.20346

    Article  PubMed  Google Scholar 

  34. Stinstra JG, Peters MJ (1998) The volume conductor may act as a temporal filter on the ECG and EEG. Med Biol Eng Comput 36:711–716

    Article  PubMed  CAS  Google Scholar 

  35. Šušmáková K, Krakovská A (2008) Discrimination ability of individual measures used in sleep stages classification. Artif Intell Med 44:261–277. https://doi.org/10.1016/j.artmed.2008.07.005

    Article  PubMed  Google Scholar 

  36. Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pennartz CMA (2011) An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. NeuroImage 55:1548–1565. https://doi.org/10.1016/j.neuroimage.2011.01.055

    Article  PubMed  Google Scholar 

  37. Vuckovic A, Radivojevic V, Chen AC, Popovic D (2002) Automatic recognition of alertness and drowsiness from EEG by an artificial neural network. Med Eng Phys 24(5):349–360

    Article  PubMed  Google Scholar 

  38. Weiss B, Clemens Z, Bódizs R, Halász P (2011) Comparison of fractal and power spectral EEG features: effects of topography and sleep stages. Brain Res Bull 84:359–375. https://doi.org/10.1016/j.brainresbull.2010.12.005

    Article  PubMed  Google Scholar 

  39. Weiss B, Clemens Z, Bódizs R, Vágó Z, Halász P (2009) Spatio-temporal analysis of monofractal and multifractal properties of the human sleep EEG. J Neurosci Methods 185:116–124. https://doi.org/10.1016/j.jneumeth.2009.07.027

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We express our gratitude to the Institute for Mental Health, Belgrade, where part of this work was done, as well as to all participants in the experiments.

This work was financed by the Ministry of Education, Science and Technological Development of the Republic of Serbia (projects OI 173022 and III 41028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar Kalauzi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalauzi, A., Vuckovic, A. & Bojić, T. New complexity measures reveal that topographic loops of human alpha phase potentials are more complex in drowsy than in wake. Med Biol Eng Comput 56, 967–978 (2018). https://doi.org/10.1007/s11517-017-1746-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1746-3

Keywords

  • Alpha activity
  • Phase potentials
  • Wake and drowsy
  • Circular graphs
  • Complexity