Skip to main content
Log in

A new Monte Carlo code for light transport in biological tissue

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The aim of this work was to develop an event-by-event Monte Carlo code for light transport (called MCLTmx) to identify and quantify ballistic, diffuse, and absorbed photons, as well as their interaction coordinates inside the biological tissue. The mean free path length was computed between two interactions for scattering or absorption processes, and if necessary scatter angles were calculated, until the photon disappeared or went out of region of interest. A three-layer array (air-tissue-air) was used, forming a semi-infinite sandwich. The light source was placed at (0,0,0), emitting towards (0,0,1). The input data were: refractive indices, target thickness (0.02, 0.05, 0.1, 0.5, and 1 cm), number of particle histories, and λ from which the code calculated: anisotropy, scattering, and absorption coefficients. Validation presents differences less than 0.1% compared with that reported in the literature. The MCLTmx code discriminates between ballistic and diffuse photons, and inside of biological tissue, it calculates: specular reflection, diffuse reflection, ballistics transmission, diffuse transmission and absorption, and all parameters dependent on wavelength and thickness. The MCLTmx code can be useful for light transport inside any medium by changing the parameters that describe the new medium: anisotropy, dispersion and attenuation coefficients, and refractive indices for specific wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kumar S, Richards-Kortum R (2006) Optical molecular imaging agents for cancer diagnostics and therapeutics. Nanomedicine 1(1):23–30

    Article  CAS  PubMed  Google Scholar 

  2. Ma X, Hui H, Shang W, Jia X, Yang X, Tian J (2015) Recent advances in optical molecular imaging and its applications in targeted drug delivery. Curr Drug Targets 16(6):542–548

    Article  CAS  PubMed  Google Scholar 

  3. Arranz A, Ripoll J (2015) Advances in optical imaging for pharmacological studies. Front Pharmacol 6:189. doi:10.3389/fphar.2015.00189

    Article  PubMed  PubMed Central  Google Scholar 

  4. Owens EA, Lee S, Choi J, Henary M, Choi HS (2015) NIR fluorescent small molecules for intraoperative imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(6):828–838. doi:10.1002/wnan.1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Star WM (1997) Light dosimetry in vivo. Phys Med Biol 42(5):763–787

    Article  CAS  PubMed  Google Scholar 

  6. Murrer LH, Marijnissen HP, Star WM (1998) Monte Carlo simulations for endobronchial photodynamic therapy: the influence of variations in optical and geometrical properties and of realistic and eccentric light sources. Lasers Surg Med 22(4):193–206

    Article  CAS  PubMed  Google Scholar 

  7. Garg T, Jain NK, Rath G, Goyal AK (2015) Nanotechnology-based photodynamic therapy: concepts, advances, and perspectives. Crit Rev Ther Drug Carrier Syst 32(5):389–439

    Article  PubMed  Google Scholar 

  8. Chen Y, Ma X, Wang X, Wang S (2014) Near-infrared photon propagation in complex knee by Monte-Carlo modeling. Chin Opt Lett 12:S21701

    Article  Google Scholar 

  9. Shirkavand A, Sarkar S, Hejazi M, Ataie-Fashtami L, Reza-Alinaghizadeh M (2007) A new Monte Carlo code for absorption simulation of laser-skin tissue interaction. Chin Opt Lett 5:238

    Google Scholar 

  10. Sweeny L, Prince A, Patel N, Moore LS, Rosenthal EL, Hughley BB, Warram JM (2016) Antiangiogenic antibody improves melanoma detection by fluorescently labeled therapeutic antibodies. Laryngoscope. doi:10.1002/lary.26215

  11. Fernandes DA, Fernandes DD, Li Y, Wang Y, Zhang Z, Rousseau D, Gradinaru CC, Kolios MC (2016) Synthesis of stable multifunctional perfluorocarbon nanoemulsions for cancer therapy and imaging. Langmuir. doi:10.1021/acs.langmuir.6b01867

  12. Glaser AK, Zhang R, Andreozzi JM, Gladstone DJ, Pogue BW (2015) Cherenkov radiation fluence estimates in tissue for molecular imaging and therapy applications. Phys Med Biol 60(17):6701–6718. doi:10.1088/0031-9155/60/17/6701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang S, Wang K, Liu H, Leng C, Gao Y, Tian J (2016) Reconstruction method for in vivo bioluminescence tomography based on the split Bregman iterative and surrogate functions. Mol Imaging Biol. doi:10.1007/s11307-016-1002-5

  14. Brezner B, Cahen S, Glasser Z, Sternklar S, Granot E (2015) Ballistic imaging of biological media with collimated illumination and focal plane detection. J Biomed Opt 20(7):76006. doi:10.1117/1.JBO.20.7.076006

    Article  PubMed  Google Scholar 

  15. Gibson AP, Hebden JC, Arridge SR (2005) Recent advances in diffuse optical imaging. Phys Med Biol 50:R1–R43

    Article  CAS  PubMed  Google Scholar 

  16. Sudarsanam S, Mathew J, Panigrahi S, Fade J, Alouini M, Ramachandran H (2016) Real-time imaging through strongly scattering media: seeing through turbid media, instantly. Sci Rep 6:25033. doi:10.1038/srep25033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Otsuki S (2016) Multiple scattering of polarized light in turbid birefringent media: a Monte Carlo simulation. Appl Opt 55(21):5652–5664. doi:10.1364/AO.55.005652

    Article  PubMed  Google Scholar 

  18. Zhang Y, Chen B, Li D (2016) Propagation of polarized light in the biological tissue: a numerical study by polarized geometric Monte Carlo method. Appl Opt 55(10):2681–2691. doi:10.1364/AO.55.002681

    Article  PubMed  Google Scholar 

  19. Majaron B, Milanič M, Premru J (2015) Monte Carlo simulation of radiation transport in human skin with rigorous treatment of curved tissue boundaries. J Biomed Opt 20(1):015002. doi:10.1117/1.JBO.20.1.015002

    Article  PubMed  Google Scholar 

  20. Jacques SL, Pogue BW (2008) Tutorial on diffuse light transport. J Biomed Opt 13(4):041302. doi:10.1117/1.2967535

    Article  PubMed  Google Scholar 

  21. Lister T, Wright PA, Chappell PH (2012) Optical properties of human skin. J Biomed Opt 17(9):90901–90901. doi:10.1117/1.JBO.17.9.090901

    Article  PubMed  Google Scholar 

  22. Ma X, Lu JQ, Ding H, Hu XH (2005) Bulk optical parameters of porcine skin dermis at eight wavelengths from 325 to 1557 nm. Opt Lett 30(4):412–414

    Article  PubMed  Google Scholar 

  23. Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58(11):R37–R61. doi:10.1088/0031-9155/58/11/R37

    Article  PubMed  Google Scholar 

  24. Sandell JL, Zhu TC (2011) A review of in-vivo optical properties of human tissues and its impact on PDT. J Biophotonics 4(11–12):773–787

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cheong W-f, Prahl SA, Welch AJ (1993) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26(12):2166–2185

    Article  Google Scholar 

  26. Prahl SA, Keijzer M, Jacques SL, Welch AJ (1989) A Monte Carlo model of light propagation in tissue. SPIE Proc Dosim Laser Radiat Med Biol IS 5:102–111

    Google Scholar 

  27. Wang LV, Wu H-I (2007) Biomedical optics: principles and imaging. John Wiley and Sons, New Jersey

    Google Scholar 

  28. Dunsby C, French PMW (2003) Techniques for depth-resolved imaging through turbid media including coherence-gated imaging. J Phys D Appl Phys 36:R207–R227

    Article  CAS  Google Scholar 

  29. Andersen PE, Jørgensen TM, Thrane L, Tycho A, Yura HT (2008) In optical coherence tomography. Springer, Technology and Applications

    Google Scholar 

  30. Badon A, Li D, Lerosey G, Boccara AC, Fink M, Aubry A (2016) Smart optical coherence tomography for ultra-deep imaging through highly scattering media. Sci Adv 2(11):e1600370

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fijimoto JG (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Drexler W, Fujimoto JG (2008) Biological and Medical Physics, Biomedical Engineering, Optical Coherence Tomography, Technology and its Applications. Springer-Verlag Berlin Heidelberg.

  33. Meinert T, Tietz O, Palme KJ, Rohrbach A (2016) Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots. Sci Rep 6:30378. doi:10.1038/srep30378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Satat G, Heshmat B, Raviv D, Raskar R (2016) All photons imaging through volumetric scattering. Sci Rep 6:33946. doi:10.1038/srep33946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu H, Hu Z, Liu M, Tian J (2016) Forward-backward pursuit algorithm for Cerenkov luminescence tomography. Conf Proc IEEE Eng Med Biol Soc 2016:2889–2892. doi:10.1109/EMBC.2016.7591333

    Google Scholar 

  36. Zhong J, Tian J, Yang X, Qin C (2011) Whole-body Cerenkov luminescence tomography with the finite element SP3 method. Ann Biomed Eng 39(6):1728–1735

    Article  PubMed  Google Scholar 

  37. Ciarrocchi E, Belcari N (2017) Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences. EJNMMI Phys 4(1):14. doi:10.1186/s40658-017-0181-8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Torres-García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-García, E., Oros-Pantoja, R., Aranda-Lara, L. et al. A new Monte Carlo code for light transport in biological tissue. Med Biol Eng Comput 56, 649–655 (2018). https://doi.org/10.1007/s11517-017-1713-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1713-z

Keywords

Navigation