Skip to main content

Advertisement

Log in

Classification of upper limb disability levels of children with spastic unilateral cerebral palsy using K-means algorithm

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Treatment for cerebral palsy depends upon the severity of the child’s condition and requires knowledge about upper limb disability. The aim of this study was to develop a systematic quantitative classification method of the upper limb disability levels for children with spastic unilateral cerebral palsy based on upper limb movements and muscle activation. Thirteen children with spastic unilateral cerebral palsy and six typically developing children participated in this study. Patients were matched on age and manual ability classification system levels I to III. Twenty-three kinematic and electromyographic variables were collected from two tasks. Discriminative analysis and K-means clustering algorithm were applied using 23 kinematic and EMG variables of each participant. Among the 23 kinematic and electromyographic variables, only two variables containing the most relevant information for the prediction of the four levels of severity of spastic unilateral cerebral palsy, which are fixed by manual ability classification system, were identified by discriminant analysis: (1) the Falconer index (CAI E ) which represents the ratio of biceps to triceps brachii activity during extension and (2) the maximal angle extension (θ Extension,max). A good correlation (Kendall Rank correlation coefficient = −0.53, p = 0.01) was found between levels fixed by manual ability classification system and the obtained classes. These findings suggest that the cost and effort needed to assess and characterize the disability level of a child can be further reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AROM:

Active range of motion

AHA:

Assisting hand assessment

CAI:

Co-activation index

CFCS:

Communication function classification system

DUL:

Dominant upper limb

EMG:

Electromyography

IUL:

Involved upper limb

GMFCS:

Gross motor function classification system

MACS:

Manual ability classification system

MCC:

Multiple correlation coefficients

PS:

Pronation/supination

SENIAM:

Surface electromyography for the noninvasive assessment of muscles

SUCP:

Spastic unilateral cerebral palsy

TD:

Typically developing

QUEST:

The quality of upper extremity skills test

References

  1. Basmajian JV (1982) Primary anatomy, 8th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  2. Bonnefoy-Mazure A, Sagawa Y Jr, Lascombes P, De Coulon G, Armand S (2013) Identification of gait patterns in individuals with cerebral palsy using multiple correspondence analysis. Res Dev Disabil 34:2684–2693. doi:10.1016/j.ridd.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  3. Bruin M et al (2013) Biceps brachii can add to performance of tasks requiring supination in cerebral palsy patients. J Electromyogr Kinesiol 23(2):516–522

    Article  PubMed  Google Scholar 

  4. Chu VW, Hornby TG, Schmit BD (2014) Effect of antispastic drugs on motor reflexes and voluntary muscle contraction in incomplete spinal cord injury. Arch Phys Med Rehabil 95:622–632. doi:10.1016/j.apmr.2013.11.001

    Article  PubMed  Google Scholar 

  5. Colver A, Rapp M, Eisemann N, Ehlinger V, Thyen U, Dickinson HO, Parkes J, Parkinson K, Nystrand M, Fauconnier J, Marcelli M, Michelsen SI, Arnaud C (2015) Self-reported quality of life of adolescents with cerebral palsy: a cross-sectional and longitudinal analysis. Lancet 385:705–716. doi:10.1016/S0140-6736(14)61229-0

    Article  PubMed  PubMed Central  Google Scholar 

  6. DeMatteo C, Law M, Russell D, Pollock N, Rosenbaum P, Walter S (1993) The reliability and validity of the quality of upper extremity skills test. Phys Occup Ther Pediatr 13:1–18

    Article  Google Scholar 

  7. Eliasson AC, Krumlinde-Sundholm L, Rosblad B, Beckung E, Arner M, Ohrvall AM, Rosenbaum P (2006) The manual ability classification system (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol 48:549–554. doi:10.1017/S0012162206001162

    Article  PubMed  Google Scholar 

  8. Falconer K, Winter DA (1985) Quantitative assessment of co-contraction at the ankle joint in walking. Electromyogr Clin Neurophysiol 25:135–149

    CAS  PubMed  Google Scholar 

  9. Feltham MG, Ledebt A, Deconinck FJ, Savelsbergh GJ (2010) Assessment of neuromuscular activation of the upper limbs in children with spastic hemiparetic cerebral palsy during a dynamical task. J Electromyogr Kinesiol 20:448–456. doi:10.1016/j.jelekin.2009.07.001

    Article  PubMed  Google Scholar 

  10. Gajewska E, Sobieska M, Samborski W (2006) Manual ability classification system for children with cerebral palsy. Chir Narzadow Ruchu Ortop Pol 71:317–319

    PubMed  Google Scholar 

  11. Gaudet G, Raison M, Maso FD, Achiche S, Begon M (2016) Intra- and intersession reliability of surface electromyography on muscles actuating the forearm during maximum voluntary contractions. J Appl Biomech 32:558–570

    Article  PubMed  Google Scholar 

  12. Greaves S, Imms C, Dodd K, Krumlinde-Sundholm L (2010) Assessing bimanual performance in young children with hemiplegic cerebral palsy: a systematic review. Dev Med Child Neurol 52:413–421

    Article  PubMed  Google Scholar 

  13. Gross R, Leboeuf F, Hardouin JB, Lempereur M, Perrouin-Verbe B, Remy-Neris O, Brochard S (2013) The influence of gait speed on co-activation in unilateral spastic cerebral palsy children. Clin Biomech (Bristol, Avon) 28:312–317. doi:10.1016/j.clinbiomech.2013.01.002

    Article  Google Scholar 

  14. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374

    Article  CAS  PubMed  Google Scholar 

  15. Hidecker MJ, Paneth N, Rosenbaum PL, Kent RD, Lillie J, Eulenberg JB, Chester K Jr, Johnson B, Michalsen L, Evatt M, Taylor K (2011) Developing and validating the communication function classification system for individuals with cerebral palsy. Dev Med Child Neurol 53:704–710. doi:10.1111/j.1469-8749.2011.03996.x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hill EL, Khanem F (2009) The development of hand preference in children: the effect of task demands and links with manual dexterity. Brain Cogn 71:99–107. doi:10.1016/j.bandc.2009.04.006

    Article  PubMed  Google Scholar 

  17. Hobart JC, Cano SJ, Zajicek JP, Thompson AJ (2007) Rating scales as outcome measures for clinical trials in neurology: problems, solutions, and recommendations. Lancet Neurol 6:1094–1105

    Article  PubMed  Google Scholar 

  18. Holmefur M, Aarts P, Hoare B, Krumlinde-Sundholm L (2009) Test–retest and alternate forms reliability of the assisting hand assessment. J Rehabil Med 41:886–891

    Article  PubMed  Google Scholar 

  19. Kreulen M, Smeulders MJ, Veeger HE, Hage JJ (2007) Movement patterns of the upper extremity and trunk associated with impaired forearm rotation in patients with hemiplegic cerebral palsy compared to healthy controls. Gait Posture 25:485–492. doi:10.1016/j.gaitpost.2006.05.015

    Article  CAS  PubMed  Google Scholar 

  20. Laitenberger M, Raison M, Périé D, Begon M (2015) Refinement of the upper limb joint kinematics and dynamics using a subject-specific closed-loop forearm model. Multibody SysDyn 33:413–438

    Article  Google Scholar 

  21. Levitt S (2010) Treatment of cerebral palsy and motor delay. Arch Dis Child 58:240

    Google Scholar 

  22. Li T, Zhu S, Ogihara M (2006) Using discriminant analysis for multi-class classification: an experimental investigation. Knowl Inf Syst 10:453–472

    Article  Google Scholar 

  23. Macqueen J (1967) Some methods for classification and analysis of multivariate observations. In: Cam LML, Neyman J (eds) Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. University of California Press, Berkeley

    Google Scholar 

  24. Moore T, Hennessy EM, Myles J, Johnson SJ, Draper ES, Costeloe KL, Marlow N (2012) Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: the EPICure studies. BMJ 345:e7961. doi:10.1136/bmj.e7961

    Article  PubMed  PubMed Central  Google Scholar 

  25. Morris C, Bartlett D (2004) Gross motor function classification system: impact and utility. Dev Med Child Neurol 46:60–65

    Article  PubMed  Google Scholar 

  26. O’Byrne JM, Jenkinson A, O’Brien TM (1998) Quantitative analysis and classification of gait patterns in cerebral palsy using a three-dimensional motion analyzer. J Child Neurol 13:101–108

    Article  PubMed  Google Scholar 

  27. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B (1997) Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 39:214–223

    Article  CAS  PubMed  Google Scholar 

  28. Pavone V, Testa G, Restivo DA, Cannavo L, Condorelli G, Portinaro NM, Sessa G (2016) Botulinum toxin treatment for limb spasticity in childhood cerebral palsy. Front Pharmacol 7:29. doi:10.3389/fphar.2016.00029

    Article  PubMed  PubMed Central  Google Scholar 

  29. Penta M, Tesio L, Arnould C, Zancan A, Thonnard JL (2001) The ABILHAND questionnaire as a measure of manual ability in chronic stroke patients: Rasch-based validation and relationship to upper limb impairment. Stroke J Cereb Circ 32:1627–1634

    Article  CAS  Google Scholar 

  30. Pison G, Struyf A, Rousseeuw PJ (1999) Displaying a clustering with CLUSPLOT. Comput Stat Data Anal 30:381–392

    Article  Google Scholar 

  31. Richards CL, Malouin F (2013) Cerebral palsy: definition, assessment and rehabilitation. Handb Clin Neurol 111:183–195. doi:10.1016/B978-0-444-52891-9.00018-X

    Article  PubMed  Google Scholar 

  32. Sangeux M, Rodda J, Graham HK (2015) Sagittal gait patterns in cerebral palsy: the plantarflexor–knee extension couple index. Gait Posture 41:586–591. doi:10.1016/j.gaitpost.2014.12.019

    Article  PubMed  Google Scholar 

  33. Sarcher A, Raison M, Ballaz L, Lemay M, Leboeuf F, Trudel K, Mathieu PA (2015) Impact of muscle activation on ranges of motion during active elbow movement in children with spastic hemiplegic cerebral palsy. Clin Biomech (Bristol, Avon) 30:86–94. doi:10.1016/j.clinbiomech.2014.10.009

    Article  CAS  Google Scholar 

  34. Sarcher A, Brochard S, Raison M, Leboeuf F, Perrouin-Verbe B, Letellier G, Gross R (2016) Sensitivity of an upper limb motion analysis protocol to changes in kinematics and muscle activity after constraint induced therapy in children with hemiplegia. Gait Posture 49:64–65

    Article  Google Scholar 

  35. Sarcher A, Raison M, Leboeuf F, Perrouin-Verbe B, Brochard S, Gross R (2016) Distinction between pathological and functional co-activation during active upper limb movements in hemiparetic children. Ann Phys Rehabil Med 59:e121

    Article  Google Scholar 

  36. Sarcher A, Raison M, Leboeuf F, Perrouin-Verbe B, Brochard S, Gross R (2017) Pathological and physiological muscle co-activation during active elbow extension in children with unilateral cerebral palsy. Clin Neurophysiol 128:4–13

    Article  CAS  PubMed  Google Scholar 

  37. Sätilä H, Kotamäki A, Koivikko M, Autti-Rämö I (2006) Upper limb function after botulinum toxin A treatment in cerebral palsy: two years follow-up of six cases. Pediatr Rehabil 9:247–258

    Article  PubMed  Google Scholar 

  38. Snedecor GW, Cochran WG (1967) Statistical methods. The Iowa State University Press, Iowa

    Google Scholar 

  39. Steenbergen B, Gordon AM (2006) Activity limitation in hemiplegic cerebral palsy: evidence for disorders in motor planning. Dev Med Child Neurol 48:780–783

    Article  PubMed  Google Scholar 

  40. Steenbergen B, Thiel EV, Hulstijn W, Meulenbroek RGJ (2000) The coordination of reaching and grasping in spastic hemiparesis. Hum Mov Sci 19:75–105

    Article  Google Scholar 

  41. Stout JL, Bruce B, Gage JR, Schutte L (1995) Joint kinetic patterns in children with spastic hemiplegia cerebral palsy. Gait Posture 4:274

    Article  Google Scholar 

  42. Tedesco AP, Nicolini-Panisson RD, de Jesus A (2015) SHUEE on the evaluation of upper limb in cerebral palsy. Acta Ortop Bras 23:219–222. doi:10.1590/1413-78522015230400967

    Article  PubMed  PubMed Central  Google Scholar 

  43. van Roon D, Steenbergen B, Meulenbroek RG (2005) Trunk use and co-contraction in cerebral palsy as regulatory mechanisms for accuracy control. Neuropsychologia 43:497–508. doi:10.1016/j.neuropsychologia.2004.07.014

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana Raouafi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the Research Ethics Boards of Ste. Justine Hospital. The authorization was written and approved by the parents or guardians of the children involved, and informed assent was obtained from all children.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raouafi, S., Achiche, S., Begon, M. et al. Classification of upper limb disability levels of children with spastic unilateral cerebral palsy using K-means algorithm. Med Biol Eng Comput 56, 49–59 (2018). https://doi.org/10.1007/s11517-017-1678-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1678-y

Keywords

Navigation