Medical & Biological Engineering & Computing

, Volume 56, Issue 1, pp 85–97 | Cite as

Delivery devices for exposure of biological cells to nanosecond pulsed electric fields

  • Malak Soueid
  • Martinus C. F. Dobbelaar
  • Sabrina Bentouati
  • Sylvia M. Bardet
  • Rodney P. O’Connor
  • Delphine Bessières
  • Jean Paillol
  • Philippe Leveque
  • Delia Arnaud-CormosEmail author
Original Article


In this paper, delivery devices for nanosecond pulsed electric field exposure of biological samples in direct contact with electrodes or isolated are presented and characterized. They are based on a modified electroporation cuvette and two transverse electromagnetic cells (TEM cells). The devices were used to apply pulses with high intensity (4.5 kV) and short durations (3 and 13 ns). The delivery devices were electromagnetically characterized in the frequency and time domains. Field intensities of around 5, 0.5, and 12 MV m−1 were obtained by numerical simulations of the biological sample positioned in the three delivery devices. Two delivery systems had a homogenous electric field spatial distribution, and one was adapted to permit a highly localized exposure in the vicinity of a needle. Experimental biological investigations were carried out at different field intensities for five cancer cell lines. The results using flow cytometry showed that cells kept polarized mitochondrial membrane but lost plasma membrane integrity following a dose–response trend after exposure to different electric field intensities. Certain cell types (U87, MCF7) showed higher sensitivities to nsPEFs than other lines tested.


Dosimetry In vitro Delivery devices Nanosecond pulsed electric field exposure High voltage 



This research was conducted in the scope of LEA-EBAM, a European Associated Laboratory titled “Pulsed Electric Fields Applications in Biology and Medicine.”


  1. 1.
    Arnaud-Cormos D, Kohler S, Bessieres D, O’Connor RP, Paillol J, Leveque P (2014) Electrical measurements for nanosecond repetitive pulsed discharges. IEEE Trans Plasma Sci 42:1909–1916. doi: 10.1109/TPS.2014.2324286 CrossRefGoogle Scholar
  2. 2.
    Bardet SM, Carr L, Soueid M, Arnaud-Cormos D, Leveque P, O’Connor RP (2016) Multiphoton imaging reveals that nanosecond pulsed electric fields collapse tumor and normal vascular perfusion in human glioblastoma xenografts. Sci Rep 6:34443. doi: 10.1038/srep34443 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Beebe SJ, Fox PM, Rec LJ, Willis EL, Schoenbach KH (2003) Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. Faseb J 17:1493–1495. doi: 10.1096/fj.02-0859fje PubMedGoogle Scholar
  4. 4.
    Behrend M, Kuthi A, Xianyue G, Vernier PT, Marcu L, Craft CM, Gundersen MA (2003) Pulse generators for pulsed electric field exposure of biological cells and tissues. IEEE Trans Dielectr Electr Insul 10:820–825CrossRefGoogle Scholar
  5. 5.
    Bortner CD, Cidlowski JA (2002) Apoptotic volume decrease and the incredible shrinking cell. Cell Death Differ 9:1307–1310. doi: 10.1038/sj.cdd.4401126 CrossRefPubMedGoogle Scholar
  6. 6.
    Bowman AM, Nesin OM, Pakhomova ON, Pakhomov AG (2010) Analysis of plasma membrane integrity by fluorescent detection of Tl + uptake. J Membr Biol 236:15–26. doi: 10.1007/s00232-010-9269-y CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D Appl Phys. doi: 10.1088/0022-3727/42/5/053001 Google Scholar
  8. 8.
    Carr L, Bardet SM, Burke RC, Arnaud-Cormos D, Leveque P, O’Connor RP (2017) Calcium-independent disruption of microtubule dynamics by nanosecond pulsed electric fields in U87 human glioblastoma cells. Sci Rep 7:41267. doi: 10.1038/srep41267 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chen M-T, Jiang C, Vernier PT, Wu Y-H, Gundersen M (2009) Two-dimensional nanosecond electric field mapping based on cell electropermeabilization. PMC Biophys 2:9CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dalmay C, Villemejane J, Joubert V, Silve A, Arnaud-Cormos D, Francais O, Mir LM, Leveque P, Le Pioufle B (2011) A microfluidic biochip for the nanoporation of living cells. Biosens Bioelectron 26:4649–4655CrossRefPubMedGoogle Scholar
  11. 11.
    Dehez F, Delemotte L, Kramar P, Miklavcic D, Tarek M (2014) Evidence of conducting hydrophobic nanopores across membranes in response to an electric field. J Phys Chem C 118:6752–6757. doi: 10.1021/jp4114865 CrossRefGoogle Scholar
  12. 12.
    Frey W, White JA, Price RO, Blackmore PF, Joshi RP, Nuccitelli R, Beebe SJ, Schoenbach KH, Kolb JF (2006) Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J 90:3608–3615CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hall EH, Schoenbach KH, Beebe SJ (2005) Nanosecond pulsed electric fields (nsPEF) induce direct electric field effects and biological effects on human colon carcinoma cells. DNA Cell Biol 24:283–291. doi: 10.1089/dna.2005.24.283 CrossRefPubMedGoogle Scholar
  14. 14.
    Heath DE, Cooper SL (2013) Chapter I.2.2—Polymers: basic principles A2—Ratner, Buddy D. In: Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials Science, 3rd edn. Academic Press, New York, pp 64–79. doi: 10.1016/B978-0-08-087780-8.00008-5 CrossRefGoogle Scholar
  15. 15.
    Heeren T, Camp JT, Kolb JF, Schoenbach KH, Katsuki S, Akiyama H (2007) 250 kV sub-nanosecond pulse generator with adjustable pulse-width. IEEE Trans Dielectr Electr Insul 14:884–888. doi: 10.1109/tdei.2007.4286520 CrossRefGoogle Scholar
  16. 16.
    Hu Q, Viswanadham S, Joshi RP, Schoenbach KH, Beebe SJ, Blackmore PF (2005) Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse. Phys Rev E. doi: 10.1103/PhysRevE.71.031914 Google Scholar
  17. 17.
    Joshi RP, Hu Q (2010) Analysis of cell membrane permeabilization mechanics and pore shape due to ultrashort electrical pulsing. Med Biol Eng Comput 48:837–844. doi: 10.1007/s11517-010-0659-1 CrossRefPubMedGoogle Scholar
  18. 18.
    Kenaan M, El Amari S, Silve A, Merla C, Mir LM, Couderc V, Arnaud-Cormos D, Leveque P (2011) Characterization of a 50-Ω exposure setup for high-voltage nanosecond pulsed electric field bioexperiments. IEEE Trans Biomed Eng 58:207–214. doi: 10.1109/TBME.2010.2081670 CrossRefPubMedGoogle Scholar
  19. 19.
    Kohler S, Jarrige P, Ticaud N, O’Connor RP, Duvillaret L, Gaborit G, Arnaud-Cormos D, Leveque P (2012) Simultaneous high intensity ultrashort pulsed electric field and temperature measurements using a unique electro-optic probe. IEEE Microw Wirel Compon Lett 22:153–155CrossRefGoogle Scholar
  20. 20.
    Kohler S, Ticaud N, Iordache MM, Moisescu MG, Savopol T, Leveque P, Arnaud-Cormos D (2014) Setup for simultaneous microwave heating and real-time spectrofluorometric measurements in biological systems. Progress Electromagn Res Pier 145:229–240CrossRefGoogle Scholar
  21. 21.
    Kolb JF, Kono S, Schoenbach KH (2006) Nanosecond pulsed electric field generators for the study of subcellular effects. Bioelectromagnetics 27:172–187CrossRefPubMedGoogle Scholar
  22. 22.
    Kumar P, Baum CE, Altunc S, Buchenauer J, Xiao S, Christodoulou CG, Schamiloglu E, Schoenbach KH (2011) A hyperband antenna to launch and focus fast high-voltage pulses onto biological targets. IEEE Trans Microw Theory Tech 59:1090–1101. doi: 10.1109/tmtt.2011.2114110 CrossRefGoogle Scholar
  23. 23.
    Lackovic I, Magjarevic R, Miklavcic D (2009) Three-dimensional finite-element analysis of joule heating in electrochemotherapy and in vivo gene electrotransfer. IEEE Trans Dielectr Electr Insul 16:1338–1347. doi: 10.1109/TDEI.2009.5293947 CrossRefGoogle Scholar
  24. 24.
    Merla C, Ticaud N, Arnaud-Cormos D, Veyret B, Leveque P (2011) Real-time RF exposure setup based on a multiple electrode array (MEA) for electrophysiological recording of neuronal networks. IEEE Trans Microw Theory Tech 59:755–762CrossRefGoogle Scholar
  25. 25.
    Miklavcic D, Sersa G, Brecelj E, Gehl J, Soden D, Bianchi G, Ruggieri P, Rossi CR, Campana LG, Jarm T (2012) Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med Biol Eng Comput 50:1213–1225. doi: 10.1007/s11517-012-0991-8 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Napotnik TB, Rebersek M, Kotnik T, Lebrasseur E, Cabodevila G, Miklavcic D (2010) Electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells. Med Biol Eng Comput 48:407–413. doi: 10.1007/s11517-010-0599-9 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Napotnik TB, Rebersek M, Vernier PT, Mali B, Miklavcic D (2016) Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): a systematic review. Bioelectrochemistry 110:1–12. doi: 10.1016/j.bioelechem.2016.02.011 CrossRefGoogle Scholar
  28. 28.
    Napotnik TB, Wu YH, Gundersen MA, Miklavcic D, Vernier PT (2012) Nanosecond electric pulses cause mitochondrial membrane permeabilization in Jurkat cells. Bioelectromagnetics 33:257–264. doi: 10.1002/bem.20707 CrossRefGoogle Scholar
  29. 29.
    Paffi A, Apollonio F, Lovisolo GA, Marino C, Pinto R, Repacholi M, Liberti M (2010) Considerations for developing an RF exposure system: a review for in vitro biological experiments. IEEE Trans Microw Theory Tech 58:2702–2714. doi: 10.1109/tmtt.2010.2065351 CrossRefGoogle Scholar
  30. 30.
    Paffi A, Merla C, Pinto R, Lovisolo GA, Liberti M, Marino C, Repacholi M, Apollonio F (2013) Microwave exposure systems for in vivo biological experiments: a systematic review. IEEE Trans Microw Theory Tech 61:1980–1993. doi: 10.1109/TMTT.2013.2246183 CrossRefGoogle Scholar
  31. 31.
    Pakhomov AG, Gianulis E, Vernier PT, Semenov I, Xiao S, Pakhomova ON (2015) Multiple nanosecond electric pulses increase the number but not the size of long-lived nanopores in the cell membrane. Biochim Biophys Acta Biomembr 1848:958–966. doi: 10.1016/j.bbamem.2014.12.026 CrossRefGoogle Scholar
  32. 32.
    Pakhomov AG, Kolb JF, White JA, Joshi RP, Xiao S, Schoenbach KH (2007) Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF). Bioelectromagnetics 28:655–663. doi: 10.1002/bem.20354 CrossRefPubMedGoogle Scholar
  33. 33.
    Pakhomov AG, Pakhomova ON (2010) Nanopores: a distinct transmembrane passageway in electroporated cells. In: Pakhomov AG, Miklavčič D, Markov MS (eds) Advanced electroporation techniques in biology and medicine. Biological effects of electromagnetics. CRC Press, Boca Raton pp, pp 177–194. doi: 10.1201/EBK1439819067-c9 Google Scholar
  34. 34.
    Pakhomov AG, Shevin R, White JA, Kolb JF, Pakhomova ON, Joshi RP, Schoenbach KH (2007) Membrane permeabilization and cell damage by ultrashort electric field shocks. Arch Biochem Biophys 465:109–118. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  35. 35.
    Pakhomova ON, Gregory B, Semenov I, Pakhomov AG (2014) Calcium-mediated pore expansion and cell death following nanoelectroporation. Biochim Biophys Acta Biomembr 1838:2547–2554. doi: 10.1016/j.bbamem.2014.06.015 CrossRefGoogle Scholar
  36. 36.
    Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:440–448CrossRefPubMedGoogle Scholar
  37. 37.
    Schoenbach KH, Joshi RP, Kolb JF, Nianyong C, Stacey M, Blackmore PF, Buescher ES, Beebe SJ (2004) Ultrashort electrical pulses open a new gateway into biological cells. Proc IEEE 92:1122–1137CrossRefGoogle Scholar
  38. 38.
    Schoenbach KH, Xiao S, Joshi RP, Thomas Camp J, Heeren T, Kolb JF, Beebe SJ (2008) The effect of intense subnanosecond electrical pulses on biological cells. IEEE Trans Plasma Sci 36:414–422. doi: 10.1109/TPS.2008.918786 CrossRefGoogle Scholar
  39. 39.
    Semenov I, Xiao S, Pakhomova ON, Pakhomov AG (2013) Recruitment of the intracellular Ca2+ by ultrashort electric stimuli: the impact of pulse duration. Cell Calcium 54:145–150. doi: 10.1016/j.ceca.2013.05.008 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Song J, Joshi RP, Schoenbach KH (2011) Synergistic effects of local temperature enhancements on cellular responses in the context of high-intensity, ultrashort electric pulses. Med Biol Eng Comput 49:713–718. doi: 10.1007/s11517-011-0745-z CrossRefPubMedGoogle Scholar
  41. 41.
    Soueid M, Kohler S, Carr L, Bardet SM, O’Connor RP, Leveque P, Arnaud-Cormos D (2014) Electromagnetic analysis of an aperture modified TEM cell including an ITO layer for real-time observation of biological cells exposed to microwaves. Progress Electromagn Res 149:193–204CrossRefGoogle Scholar
  42. 42.
    Sridhara V, Joshi RP (2014) Numerical study of lipid translocation driven by nanoporation due to multiple high-intensity, ultrashort electrical pulses. Biochim Biophys Acta Biomembr 1838:902–909. doi: 10.1016/j.bbamem.2013.11.003 CrossRefGoogle Scholar
  43. 43.
    Sun Y, Vernier PT, Behrend M, Marcu L, Gundersen MA (2004) Microscope slide electrode chamber for nanosecond, megavolt-per-meter biological investigations. In: Nsti Nanotech 2004, vol 1, technical proceedingsGoogle Scholar
  44. 44.
    Teissie J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim Biophys Acta Gen Subj 1724:270–280. doi: 10.1016/j.bbagen.2005.05.006 CrossRefGoogle Scholar
  45. 45.
    Ticaud N, Kohler S, Jarrige P, Duvillaret L, Gaborit G, O’Connor RP, Arnaud-Cormos D, Leveque P (2012) Specific absorption rate assessment using simultaneous electric field and temperature measurements. IEEE Antennas Wirel Propag Lett 11:252–255CrossRefGoogle Scholar
  46. 46.
    Vernier PT, Levine ZA, Gundersen MA (2013) Water bridges in electropermeabilized phospholipid bilayers. Proc IEEE 101:494–504CrossRefGoogle Scholar
  47. 47.
    Vernier PT, Sun Y, Gundersen MA (2006) Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. BMC Cell Biol 7:37. doi: 10.1186/1471-2121-7-37 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Vernier PT, Sun Y, Ziegler MJ, Gundersen MA (2006) Nanoelectropulse-driven membrane perturbation and permeabilization. In: Sun Y (ed) Bio micro and nanosystems conference. BMN ‘06, 2006. pp 52–52Google Scholar
  49. 49.
    Vernier PT, Sun YH, Marcu L, Salemi S, Craft CM, Gundersen MA (2003) Calcium bursts induced by nanosecond electric pulses. Biochem Biophys Res Commun 310:286–295CrossRefPubMedGoogle Scholar
  50. 50.
    Vernier PT, Ziegler MJ, Sun YH, Chang WV, Gundersen MA, Tieleman DP (2006) Nanopore formation and phosphatidylserine externalization in a phospholipid bilayer at high transmembrane potential. J Am Chem Soc 128:6288–6289. doi: 10.1021/ja0588306 CrossRefPubMedGoogle Scholar
  51. 51.
    Villemejane J, Mir LM (2009) Physical methods of nucleic acid transfer: general concepts and applications. Br J Pharmacol 157:207–219. doi: 10.1111/j.1476-5381.2009.00032.x CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Weaver JC (1993) Electroporation—a general phenomenon for manipulating cells and tissues. J Cell Biochem 51:426–435CrossRefPubMedGoogle Scholar
  53. 53.
    Wu YH, Arnaud-Cormos D, Casciola M, Sanders JM, Leveque P, Vernier PT (2013) Moveable wire electrode microchamber for nanosecond pulsed electric-field delivery. IEEE Trans Biomed Eng 60:489–496. doi: 10.1109/TBME.2012.2228650 CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2017

Authors and Affiliations

  • Malak Soueid
    • 1
  • Martinus C. F. Dobbelaar
    • 1
    • 2
  • Sabrina Bentouati
    • 1
  • Sylvia M. Bardet
    • 1
  • Rodney P. O’Connor
    • 1
  • Delphine Bessières
    • 2
  • Jean Paillol
    • 2
  • Philippe Leveque
    • 1
  • Delia Arnaud-Cormos
    • 1
    Email author
  1. 1.Univ. Limoges, CNRS, XLIMUMR 7252LimogesFrance
  2. 2.SIAME LaboratoryUniversity of PauPauFrance

Personalised recommendations