Skip to main content

Advertisement

Log in

Deformation of facial model for complete denture prosthesis using ARAP group method and elastic properties

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

With the development of 3D printing and computer graphics technology, mouth rehabilitation has increasingly adopted digital methods. This research proposes a new method to transform the appearance of facial model after complete denture prosthesis. A feature template with few feature points is first constructed according to the facial muscle anatomy and facial deformation after complete denture prosthesis. Next, the traditional as-rigid-as-possible (ARAP) method is optimised by clustering based on facial muscles. The optimised ARAP method is then used for real-time and interactive simulations. Finally, by classifying the degrees of elasticity in the model with additional weights, the simulation can be customised to the skin of individual patients. Different degrees of elastic deformation and post-operative models are superimposed for match analysis. Compared with our previous study, the error is reduced by 24.05%. Results show that our method can deform facial models accurately and efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Baran I, Popovic J (2007) Automatic rigging and animation of 3D characters. ACM Trans Graph 26(3):72

    Article  Google Scholar 

  2. Botsch M, Sorkine O (2008) On linear variational surface deformation methods. IEEE Trans Visual Comput Graph 14(1):213–230

    Article  Google Scholar 

  3. Chabanas M, Luboz V, Payan Y (2003) Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Med Image Anal 7(2):131–151

    Article  PubMed  Google Scholar 

  4. Chao I, Pinkall U, Sanan P, Schroder P (2010) A simple geometric model for elastic deformations. ACM Trans Graph 29(4):157–166

    Article  Google Scholar 

  5. Cheng C, Cheng X, Dai N, Jiang X, Sun Y, Li W (2015) Prediction of facial deformation after complete denture prosthesis using BP neural network. Comput Biol Med 66:103–112

    Article  PubMed  Google Scholar 

  6. Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans Visual Comput Graph 5(1):62–73

    Article  Google Scholar 

  7. Courtecuisse H, Jung H, Allard J et al (2010) GPU-based real-time soft tissue deformation with cutting and haptic feedback. Prog Biophys Mol Biol 103(103):159–168

    Article  PubMed  Google Scholar 

  8. Gladilin E (2003) Biomechanical modeling of soft tissue and facial expressions for craniofacial surgery planning. Dissertation

  9. Igarashi T, Moscovich T, Hughes JF (2005) As-rigid-as-possible shape manipulation. ACM Trans Graph 24(3):1134–1141

    Article  Google Scholar 

  10. Joldes GR, Wittek A, Miller K (2009) Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation. Med Image Anal 13(6):912–919

    Article  PubMed  Google Scholar 

  11. Joshi P, Meyer M, Derose T, Green B, Sanocki T (2007) Harmonic coordinates for character articulation. ACM Trans Graph 26(3):71

    Article  Google Scholar 

  12. Ju T, Schaefer S, Warren J (2005) Mean value coordinates for closed triangular meshes. ACM Trans Graph 24(3):561–566

    Article  Google Scholar 

  13. Keeve E, Girod S, Kikinis R, Girod B (1998) Deformable modeling of facial tissue for craniofacial surgery simulation. Comput Aided Surg 3(5):228–238

    Article  CAS  PubMed  Google Scholar 

  14. Koch RM, Gross MH, Carls FR, Von Buren DF (1999) Simulating facial surgery using finite element models. In: Proceedings of ACM SIGGRAPH, pp 421–428

  15. Lewis JP, Cordner M, Fong N (2000) Pose space deformations: a unified approach to shape interpolation and skeleton-driven deformation. Conf Comput Graph Interact Tech 6:165–172

    Google Scholar 

  16. Lipman Y, Levin D, Cohenor D (2008) Green coordinates. Acm Trans Graph 27(3):15–19

    Article  Google Scholar 

  17. Liu L, Zhang L, Xu Y, Gotsman C, Gortler SJ (2008) A local/global approach to mesh parameterization. Comput Graph Forum 27(5):1495–1504

    Article  Google Scholar 

  18. Lu MH, Zheng YP (2004) Indentation test of soft tissues with curved substrates: a finite element study. Med Biol Eng Comput 42(4):535–540

    Article  CAS  PubMed  Google Scholar 

  19. Maccracken R, Joy KI (1996) Free-form deformations with lattices of arbitrary topology. Conference on computer graphics & interactive techniques, pp 181–188

  20. Niroomandi S, Alfaro I, Cueto E et al (2012) Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models. Comput Methods Programs Biomed 105(1):1–12

    Article  CAS  PubMed  Google Scholar 

  21. Sarti A, Gori R, Lamberti C (1999) A physically based model to simulate maxillo-facial surgery from 3D CT images. Future Gener Comput Syst 15:217–222

    Article  Google Scholar 

  22. Takács Árpád, Rudas IJ, Haidegger T (2015) Surface deformation and reaction force estimation of liver tissue based on a novel nonlinear mass–spring–damper viscoelastic model. Med Biol Eng Comput 48:361–370

    Google Scholar 

  23. Teschner M, Girod S, Girod B (2000) Direct computation of nonlinear soft-tissue deformation. Vision, modeling, visualization, VMV, pp 383–390

  24. Wareham R, Lasenby J (2008) Bone glow: an improved method for the assignment of weights for mesh deformation. Articulated motion & deformable objects, international conference, pp 63–71

  25. Weber O, Benchen M, Gotsman C (2009) Complex barycentric coordinates with applications to planar shape deformation. Comput Graph Forum 28(2):587–597

    Article  Google Scholar 

  26. Weichert F, Schröder A, Landes C, Shamaa A, Awad SK, Walczak L, Müller H, Wagner M (2010) Computation of a finite element-conformal tetrahedral mesh approximation for simulated soft tissue deformation using a deformable surface model. Med Biol Eng Comput 48(6):597–610

    Article  PubMed  Google Scholar 

  27. Zachow S, Gladiline E, Hege H, Deuflhard P (2000) Finite-element simulation of soft tissue deformation. Computer assisted radiology and surgery (CARS), Elsevier Science BV, pp 23–28

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (51205192, 81271181), Jiangsu Key Technology Support Program (No. BE2014009-3), the Natural Science Foundation of Jiangsu Province, China (No. BK20161487) and Six talent peaks project in Jiangsu Province, China (No. GDZB-034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Dai or Yuchun Sun.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Cheng, X., Dai, N. et al. Deformation of facial model for complete denture prosthesis using ARAP group method and elastic properties. Med Biol Eng Comput 55, 1635–1647 (2017). https://doi.org/10.1007/s11517-017-1626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1626-x

Keywords

Navigation