Optic disc detection in retinal fundus images using gravitational law-based edge detection

Abstract

Diabetic retinopathy is one of the primary causes of vision loss worldwide. Early detection of the condition is critical for providing adequate treatment of this ailment to prevent vision loss. This detection is achieved by processing retinal fundus images. A key step in detecting diabetic retinopathy is identifying the optic disc in these images. The optic disc is similar in color and contrast to the exudates that indicate diabetic retinopathy. Hence, the optic disc has to be removed from the fundus image before exudates can be detected. Detecting the optic disc is also required in algorithms used for blood vessel segmentation in fundus images. Therefore, there is a need for approaches that accurately and quickly detect optic disc. This paper proposes a simple, deterministic, and time-efficient approach for optic disc detection by adapting an edge detection algorithm inspired by the gravitational law. Our method introduces novel pre- and post-detection steps that aim to increase the accuracy of the adapted detection method. In addition, a candidate selection technique is proposed to decrease the number of missed optic discs. The proposed methodology was found to have a detection rate of 100, 97.75, 92.90, and 95 % for DRIVE, DiaRet, DMED, and STARE datasets, respectively, which is comparatively better than existing optic disc detection schemes. Experimental results showed an average running time of 0.40 s per image, which is significantly lower than available methods published in the literature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Chowriappa P, Dua S, Acharya UR, Krishnan MMR (2013) Ensemble selection for feature-based classification of diabetic maculopathy images. Comput Biol Med 43(12):2156–2162

    Article  PubMed  Google Scholar 

  2. 2.

    Chua CK, Mookiah MRK, Koh JEW, Acharya UR, Lim CM, Laude A, Ng EYK (2013) Automated diagnosis of maculopathy stages using texture features. Int J Integr Care 13(8):1–2

    Google Scholar 

  3. 3.

    Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. Comput Intell Mag IEEE 1(4):28–39

    Article  Google Scholar 

  4. 4.

    Eye Diseases Prevalence Research Group (2004) The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol 122(4):552

    Article  Google Scholar 

  5. 5.

    Faust O, Acharya R, Ng EYK, Ng KH, Suri JS (2012) Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review. J Med Syst 36(1):145–157

    Article  PubMed  Google Scholar 

  6. 6.

    Fleming AD, Goatman KA, Philip S, Olson JA, Sharp PF (2007) Automatic detection of retinal anatomy to assist diabetic retinopathy screening. Phys Med Biol 52(2):331–345

    Article  PubMed  Google Scholar 

  7. 7.

    Foracchia M, Grisan E, Ruggeri A (2004) Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans Med Imag 23(10):1189–1195

    CAS  Article  Google Scholar 

  8. 8.

    Ganesan K, Martis RJ, Acharya UR, Chua CK, Min LC, Ng EYK, Laude A (2014) Computer-aided diabetic retinopathy detection using trace transforms on digital fundus images. Med Biol Eng Comp 52(8):663–672

    Article  Google Scholar 

  9. 9.

    Giancardo L, Meriaudeau F, Karnowski TP, Li Y, Garg S, Tobin KW, Chaum E (2012) Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med Image Anal 16(1):216–226

    Article  PubMed  Google Scholar 

  10. 10.

    Harangi B, Hajdu A (2015) Detection of the optic disc in fundus images by combining probability models. Comput Biol Med 65:10–24

    Article  PubMed  Google Scholar 

  11. 11.

    Hoover A, Goldbaum M (2003) Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imag 22(8):951–958

    Article  Google Scholar 

  12. 12.

    Hsiao HK, Liu CC, Yu CY, Kuo SW, Yu SS (2012) A novel optic disc detection scheme on retinal images. Expert Syst Appl 39(12):10600–10606

    Article  Google Scholar 

  13. 13.

    Ibrahim S, Dua S, Chowriappa P, Acharya UR, Noronha K, Bhandary S, Mugasa H (2015) Classification of diabetes maculopathy images using data-adaptive neuro-fuzzy inference classifier. Med Biol Eng Compu 53(12):1345–1360

    Article  Google Scholar 

  14. 14.

    Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471

    Article  Google Scholar 

  15. 15.

    Kauppi T, Kalesnykiene V, Kamarainen JK, Voutilainen R, Pietila J, Kalviainen H, Uusitalo H (2014) DIARETDB1 diabetic retinopathy database and evaluation protocol. Technical report

  16. 16.

    Kennedy J (2010) Particle swarm optimization Encyclopedia of Machine Learning. Springer, New York, pp 760–766

    Google Scholar 

  17. 17.

    Krishnan MMR, Faust O (2013) Automated glaucoma detection using hybrid feature extraction in retinal fundus images. J Mech Med Biol 13(01):1350011

    Article  Google Scholar 

  18. 18.

    Lopez-Molina C, Bustince H, Fern´andez J, Couto P, De Baets B (2010) A gravitational approach to edge detection based on triangular norms. Pattern Recogn 43(11):3730–3741

    Article  Google Scholar 

  19. 19.

    Mookiah MRK, Acharya UR, Chua CK, Lim CM, Ng EYK, Laude A (2013) Computer-aided diagnosis of diabetic retinopathy: a review. Comput Biol Med 43(12):2136–2155

    Article  PubMed  Google Scholar 

  20. 20.

    Mookiah MRK, Acharya UR, Martis RJ, Chua CK, Lim CM, Ng EYK, Laude A (2013) Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach. Knowl Based Syst 39:9–22

    Article  Google Scholar 

  21. 21.

    Mookiah MRK, Acharya UR, Chandran V, Martis RJ, Tan JH, Koh JE, Chua CK, Tong L, Laude A (2015) Application of higher-order spectra for automated grading of diabetic maculopathy. Med Biol Eng Comp 53(12):1–13

    Article  Google Scholar 

  22. 22.

    Narasimha-Iyer H, Can A, Roysam B, Stewart V, Tanenbaum HL, Majerovics A, Singh H (2006) Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy. IEEE Trans Biomed Eng 53(6):1084–1098

    Article  PubMed  Google Scholar 

  23. 23.

    Nayak J, Acharya R, Bhat PS, Shetty N, Lim TC (2009) Automated diagnosis of glaucoma using digital fundus images. J Med Syst 33(5):337–346

    Article  PubMed  Google Scholar 

  24. 24.

    Noronha KP, Acharya UR, Nayak KP, Martis RJ, Bhandary SV (2014) Automated classification of glaucoma stages using higher order cumulant features. Biomed Sig Process Control 10:174–183

    Article  Google Scholar 

  25. 25.

    Otsu N (1975) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  26. 26.

    Pereira C, Goncalves L, Ferreira M (2013) Optic disc detection in color fundus images using ant colony optimization. Med Biol Eng Comp 51(3):295–303

    Article  Google Scholar 

  27. 27.

    Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mac Intell 12(7):629–639

    Article  Google Scholar 

  28. 28.

    Qureshi RJ, Kovacs L, Nagy B, Harangi B, Peto T, Hajdu A (2012) Combining algorithms for automatic detection of optic disc and macula in fundus images. Comput Vis Image Underst 116(1):138–145

    Article  Google Scholar 

  29. 29.

    Rahebi J, Hardalac F (2015) A new approach to optic disc detection in human retinal images using the firefly algorithm. Med Biol Eng Comput 54(2):453–461

    PubMed  Google Scholar 

  30. 30.

    Reza AW, Eswaran C, Hati S (2009) Automatic tracing of optic disc and exudates from color fundus images using fixed and variable thresholds. J Med Syst 33(1):73–80

    Article  PubMed  Google Scholar 

  31. 31.

    Reza AW, Eswaran C, Dimyati K (2011) Diagnosis of diabetic retinopathy: automatic extraction of optic disc and exudates from retinal images using marker-controlled watershed transformation. J Med Syst 35(6):1491–1501

    Article  PubMed  Google Scholar 

  32. 32.

    Sinthanayothin C, Boyce JF, Cook HL, Williamson TH (1999) Automated localization of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br J Ophthalmol 83(8):902–910

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Staal Joes, Abramoff Michael D, MeindertNiemeijer Max Viergever, Van Ginneken Bram et al (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509

    Article  PubMed  Google Scholar 

  34. 34.

    Suero A, Martin D, Gegundez-Arias ME, Bravo JM (2013) Locating the optic disc in retinal images using morphological techniques. In: International work-conference on bioinformatics and biomedical engineering (IWBBIO 2013). Granada, Spain, pp 593–600

  35. 35.

    Sun G, Liu Q, Liu Q, Ji C, Li X (2007) A novel approach for edge detection based on the theory of universal gravity. Pattern Recogn 40(10):2766–2775

    Article  Google Scholar 

  36. 36.

    Tariq A, Akram MU, Shaukat A, Khan SA (2013) Automated detection and grading of diabetic maculopathy in digital retinal images. J Digit Imaging 26(4):803–812

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Walter Thomas, Klein Jean-Claude, Massin Pascale, Erginay Ali (2002) A contribution of image processing to the diagnosis of diabetic retinopathy detection of exudates in color fundus images of the human retina. IEEE Trans Med Imaging 21(10):1236–1243

    Article  PubMed  Google Scholar 

  38. 38.

    Welfer D, Scharcanski J, Kitamura CM, Dal Pizzol MM, Ludwig LW, Marinho DR (2010) Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Comput Biol Med 40(2):124–137

    Article  PubMed  Google Scholar 

  39. 39.

    Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver press

  40. 40.

    Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, Chen SJ, Dekker JM, Fletcher A, Grauslund J et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabet care 35:111909

    Article  Google Scholar 

  41. 41.

    Yigitbasi E, Baykan N (2013) Edge detection using artificial bee colony algorithm (ABC). Int J Inf Electron Eng 3(6):634–638

    Google Scholar 

  42. 42.

    Youssif AAHAR, Ghalwash AZ, Ghoneim AASAR (2008) Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE Trans Med Imaging 27(1):11–18

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Zhou H, Schaefer G, Liu T, Lin F (2010) Segmentation of optic disc in retinal images using an improved gradient vector flow algorithm. Multimed Tools Appl 49(3):447–462

    Article  Google Scholar 

  44. 44.

    Zhu X, Rangayyan RM, Ells AL (2010) Detection of the optic nerve head in fundus images of the retina using the hough transform for circles. J Digit Imaging 23(3):332–341

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Alshayeji.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alshayeji, M., Al-Roomi, S.A. & Abed, S. Optic disc detection in retinal fundus images using gravitational law-based edge detection. Med Biol Eng Comput 55, 935–948 (2017). https://doi.org/10.1007/s11517-016-1563-0

Download citation

Keywords

  • Retina
  • Diabetic retinopathy
  • Fundus image
  • Optic disc
  • Edge detection