Skip to main content

Advertisement

Log in

Mathematical model of tumor volume dynamics in mice treated with electrochemotherapy

  • Special Issue – Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The effectiveness of electrochemotherapy, a local treatment using electric pulses to increase the uptake of chemotherapeutic drug, includes several antitumor mechanisms. In addition to the cytotoxic action of chemotherapeutic drug, treatment outcome also depends on antitumor immune response. In order to assess the contribution of different antitumor mechanisms to the observed treatment outcome, we designed a model of tumor volume dynamics, which is able to quantify early and late treatment effects. Model integrates characteristics of both main posttreatment processes, namely removal of lethally damaged cells from tumor volume and tumor–immune interaction. Fitting to individual responses gives the insight into the dynamics of tumor cell elimination. Two more or less clearly separable peaks can be observed from these dynamics. Model was used to quantify responses obtained after chemotherapy and electrochemotherapy with bleomycin and cisplatin in immunocompetent and immunodeficient mice. As expected, electrochemotherapy resulted in higher number of lethally damaged cells as well as in stronger immune response compared to chemotherapy alone. Additionally, bleomycin-treated tumors proved to be more immunogenic than cisplatin-treated tumors in the given range of doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adkins I, Fucikova J, Garg AD, Agostinis P, Spisek R (2015) Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy. Oncoimmunology 3:e968434

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bugaut H , Bruchard M, Berger H, Derangere V, Odoul L, Euvrard R, Ladoire S, Chalmin F, Vegran F, Rebe C, Apetoh L, Ghiringhelli F, Mignot G (2013) Bleomycin exerts ambivalent antitumor immune effect by triggering both immunogenic cell death and proliferation of regulatory T cells. PLoS One 8:e65181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Calvet CY, Famin D, Andre FM, Mir LM (2014) Electrochemotherapy with bleomycin induces hallmarks of immunogenic cell death in murine colon cancer cells. Oncoimmunology 3:e28131

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cemazar M, Miklavcic D, Sersa G (1998) Intrinsic sensitivity of tumor cells to bleomycin as an indicator of tumor response to electrochemotherapy. Jpn J Cancer Res 89:328–333

    Article  CAS  PubMed  Google Scholar 

  5. Cemazar M, Parkins CS, Holder AL, Kranjc S, Chaplin DJ, Sersa G (2001) Cytotoxicity of bioreductive drug tirapazamine is increased by application of electric pulses in SA-1 tumours in mice. Anticancer Res 21:1151–1156

    CAS  PubMed  Google Scholar 

  6. Corovic S, Lackovic I, Sustaric P, Sustar T, Rodic T, Miklavcic D (2013) Modeling of electric field distribution in tissues during electroporation. Biomed Eng Online 12:16

    Article  PubMed  PubMed Central  Google Scholar 

  7. Domenge C, Orlowski S, Luboinski B, De Baere T, Schwaab G, Belehradek J, Mir LM (1996) Antitumor electrochemotherapy: new advances in the clinical protocol. Cancer 77:956–963

    Article  CAS  PubMed  Google Scholar 

  8. Edhemovic I, Brecelj E, Gasljevic G, Marolt Music M, Gorjup V, Mali B, Jarm T, Kos B, Pavliha D, Grcar Kuzmanov B, Cemazar M, Snoj M, Miklavcic D, Gadzijev EM, Sersa G (2014) Intraoperative electrochemotherapy of colorectal liver metastases. J Surg Oncol 110:320–327

    Article  PubMed  Google Scholar 

  9. Gay HA, Taylor QQ, Kiriyama F, Dieck GT, Jenkins T, Walker P, Allison RR, Ubezio P (2013) Modeling of non-small cell lung cancer volume changes during CT-based image guided radiotherapy: patterns observed and clinical implications. Comput Math Methods Med 2013:637181

    Article  PubMed  PubMed Central  Google Scholar 

  10. Golden EB, Apetoh L (2015) Radiotherapy and immunogenic cell death. Semin Radiat Oncol 25:11–17

    Article  PubMed  Google Scholar 

  11. Jarm T, Cemazar M, Miklavcic D, Sersa G (2010) Antivascular effects of electrochemotherapy: implications in treatment of bleeding metastases. Expert Rev Anticancer Ther 10:729–746

    Article  PubMed  Google Scholar 

  12. Koch G, Walz A, Lahu G, Schropp J (2009) Modeling of tumor growth and anticancer effects of combination therapy. J Pharmacokinet Pharmacodyn 36:179–197

    Article  CAS  PubMed  Google Scholar 

  13. Kotnik T, Kramar P, Pucihar G, Miklavcic D, Tarek M (2012) Cell membrane electroporation- Part 1: The phenomenon. IEEE Electr Insul Mag 28:14–23

    Article  Google Scholar 

  14. Kuznetsov V, Makalkin I, Taylor M, Perelson A (1994) Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull Math Biol 56:295–321

    Article  CAS  PubMed  Google Scholar 

  15. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12:860–875

    Article  CAS  PubMed  Google Scholar 

  16. Markelc B, Bellard E, Sersa G, Pelofy S, Teissie J, Coer A, Golzio M, Cemazar M (2012) In vivo molecular imaging and histological analysis of changes induced by electric pulses used for plasmid DNA electrotransfer to the skin: a study in a dorsal window chamber in mice. J Membr Biol 245:545–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Markelc B, Sersa G, Cemazar M (2013) Differential mechanisms associated with vascular disrupting action of electrochemotherapy: intravital microscopy on the level of single normal and tumor blood vessels. PLoS One 8:e59557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marty M, Sersa G, Garbay JR, Gehl J, Collins CG, Snoj M, Billard V, Geertsen PF, Larkin JO, Miklavcic D, Pavlovic I, Paulin-Kosir SM, Cemazar M, Morsli N, Soden DM, Rudolf Z, Robert C, O’Sullivan GC, Mir LM (2006) Electrochemotherapy—an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur J Cancer Suppl 4:3–13

    Article  CAS  Google Scholar 

  19. Miklavcic D, Mali B, Kos B, Heller R, Sersa G (2014) Electrochemotherapy: from the drawing board into medical practice. Biomed Eng Online 13:29

    Article  PubMed  PubMed Central  Google Scholar 

  20. Miklavcic D, Sersa G, Brecelj E, Gehl J, Soden D, Bianchi G, Ruggieri P, Rossi CR, Campana LG, Jarm T (2012) Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med Biol Eng Comput 50:1213–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miklavcic D, Beravs K, Semrov D, Cemazar M, Demsar F, Sersa G (1998) The importance of electric field distribution for effective in vivo electroporation of tissues. Biophys J 74:2152–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mir LM, Orlowski S, Belehradek J, Paoletti C (1991) Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer 27:68–72

    Article  CAS  PubMed  Google Scholar 

  23. Mould DR, Walz A-C, Lave T, Gibbs JP, Frame B (2015) Developing exposure/response models for anticancer drug treatment: special considerations. CPT Pharmacomet Syst Pharmacol 4:e00016

    Article  CAS  Google Scholar 

  24. Pavselj N, Bregar Z, Cukjati D, Batiuskaite D, Mir LM, Miklavcic D (2005) The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals. IEEE Trans Biomed Eng 52:1373–1381

    Article  PubMed  Google Scholar 

  25. Rocchetti M, Poggesi I, Germani M, Fiorentini F, Pellizzoni C, Zugnoni P, Pesenti E, Simeoni M, De Nicolao G (2005) A pharmacokinetic-pharmacodynamic model for predicting tumour growth inhibition in mice: a useful tool in oncology drug development. Basic Clin Pharmacol Toxicol 96:265–268

    Article  CAS  PubMed  Google Scholar 

  26. Rockne R, Alvord EC, Rockhill JK, Swanson KR (2009) A mathematical model for brain tumor response to radiation therapy. J Math Biol 58:561–578

    Article  CAS  PubMed  Google Scholar 

  27. Sersa G, Miklavcic D, Cemazar M, Belehradek J, Jarm T, Mir LM (1997) Electrochemotherapy with CDDP on LPB sarcoma: comparison of the anti-tumor effectiveness in immunocompotent and immunodeficient mice. Bioelectrochem Bioenerg 43:279–283

    Article  CAS  Google Scholar 

  28. Sersa G, Jarm T, Kotnik T, Coer A, Podkrajsek M, Sentjurc M, Miklavcic D, Kadivec M, Kranjc S, Secerov A, Cemazar M (2008) Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br J Cancer 98:388–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sersa G, Teissie J, Cemazar M, Signori E, Kamensek U, Marshall G, Miklavcic D (2015) Electrochemotherapy of tumors as in situ vaccination boosted by immunogene electrotransfer. Cancer Immunol Immunother 64:1315–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sersa G, Cemazar M, Miklavcic D (1995) Antitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum(II) in mice. Cancer Res 55:3450–3455

    CAS  PubMed  Google Scholar 

  31. Sersa G, Miklavcic D, Cemazar M, Rudolf Z, Pucihar G, Snoj M (2008) Electrochemotherapy in treatment of tumours. Eur J Surg Oncol 34:232–240

    Article  CAS  PubMed  Google Scholar 

  32. Spratt DE, Gordon Spratt EA, Wu S, DeRosa A, Lee NY, Lacouture ME, Barker CA (2014) Efficacy of skin-directed therapy for cutaneous metastases from advanced cancer: a meta-analysis. J Clin Oncol 32:3144–3155

    Article  PubMed  PubMed Central  Google Scholar 

  33. Todorovic V, Sersa G, Flisar K, Cemazar M (2009) Enhanced cytotoxicity of bleomycin and cisplatin after electroporation in murine colorectal carcinoma cells. Radiol Oncol 43:264–273

    Article  CAS  Google Scholar 

  34. Trdan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454

    Article  Google Scholar 

  35. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73

    Article  CAS  PubMed  Google Scholar 

  36. Zitvogel L, Kepp O, Kroemer G (2011) Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 8:151–160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovenian Research Agency (ARRS) and conducted within the scope of Electroporation in Biology and Medicine (EBAM) European Associated Laboratory (LEA) and the COST Action TD1104 (in particular by a short-term scientific mission COST-STSM-TD1104-21001). Authors would like to thank Gregor Sersa from Institute of Oncology Ljubljana for providing us with the raw data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damijan Miklavčič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forjanič, T., Miklavčič, D. Mathematical model of tumor volume dynamics in mice treated with electrochemotherapy. Med Biol Eng Comput 55, 1085–1096 (2017). https://doi.org/10.1007/s11517-016-1562-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1562-1

Keywords

Navigation