Skip to main content

Advertisement

Log in

Monopole patch antenna for in vivo exposure to nanosecond pulsed electric fields

  • Special Issue – Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

To explore the promising therapeutic applications of short nanosecond electric pulses, in vitro and in vivo experiments are highly required. In this paper, an exposure system based on monopole patch antenna is reported to perform in vivo experiments on newborn mice with both monopolar and bipolar nanosecond signals. Analytical design and numerical simulations of the antenna in air were carried out as well as experimental characterizations in term of scattering parameter (S 11) and spatial electric field distribution. Numerical dosimetry of the setup with four newborn mice properly placed in proximity of the antenna patch was carried out, exploiting a matching technique to decrease the reflections due to dielectric discontinuities (i.e., from air to mouse tissues). Such technique consists in the use of a matching dielectric box with dielectric permittivity similar to those of the mice. The average computed electric field inside single mice was homogeneous (better than 68 %) with an efficiency higher than 20 V m−1 V−1 for the four exposed mice. These results demonstrate the possibility of a multiple (four) exposure of small animals to short nanosecond pulses (both monopolar and bipolar) in a controlled and efficient way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agilent Network Analyzer Basics. Available via DIALOG. http://cp.literature.agilent.com/litweb/pdf/5965-7917E.pdf. Accessed 19 Oct 2015

  2. Altunc S, Baum CE et al (2009) Design of special dielectric lens for concentrating a subnanosecond electromagnetic pulse on a biological target. IEEE Trans Dielect Elect Insul 16:1365–1375

    Article  Google Scholar 

  3. Apollonio F, Liberti M et al (2013) Feasibility for microwave energy to affect biological system via non-thermal mechanisms: a systematic approach. IEEE Trans Microw Theory Tech 61:2031–2045

    Article  Google Scholar 

  4. Balanis A (2005) Antenna theory analysis and design. Wiley, Hoboken

    Google Scholar 

  5. Baum CE (2007) Focal waveform of a prolate-spheroidal impulse radiating antenna (IRA). Radio Sci 42:RS6S27

    Article  Google Scholar 

  6. Beebe SJ (2015) Considering effects of nanosecond pulsed electric fields on proteins. Bioelectrochemistry 103:52–59

    Article  CAS  PubMed  Google Scholar 

  7. Beebe SJ et al (2010) Bioelectric applications for treatment of melanoma. Cancer 2:1731–1770

    Article  Google Scholar 

  8. Camp JT, Jing Y, Zhuang J, Kolb JF, Beebe SJ, Song J, Joshi RP, Xiao S, Schoenbach KH (2012) Cell death induced by subnanosecond pulsed electric fields at elevated temperatures. IEEE Trans Plasma Sci 40:2234–2347

    Article  Google Scholar 

  9. Farina L, Weiss N et al (2014) Characterization of tissue shrinkage during microwave thermal ablation. Int J Hyperth 30(7):419–428

    Article  Google Scholar 

  10. Gabriel C (2007) Dielectric properties of biological material. In: Barnes FS, Greenebaum B (eds) Handbook of biological effects of electromagnetic fields, 3rd edn. CRC Press, New York, pp 52–94

    Google Scholar 

  11. Garon EB, Sawcer D, Vernier PT, Tang T, Sun Y, Marcu L, Gundersen MA, Koeffler HP (2007) In vitro and in vivo evaluation and a case report of intense nanosecond pulsed electric field as a local therapy for human malignancies. Int J Cancer 121(3):675–682

    Article  CAS  PubMed  Google Scholar 

  12. Guo F, Yao C, Bajracharya C, Polisetty S, Schoenbach KH, Xiao S (2014) Simulation study of delivery of subnanosecond pulses to biological tissues with an impulse radiating antenna. Bioelectromagnetics 35:145–159

    Article  PubMed  Google Scholar 

  13. Ishizawa H, Tanabe T, Yoshida D, Hamid S, Hosseini R, Katsuki S, Akiyama H (2013) Focusing system of burst electromagnetic waves for medical applications. IEEE Trans on Dielect Elect Insulation 20(4):1321–1326

    Article  Google Scholar 

  14. Joshi RP, Schoenbach KH (2010) Bioelectric effects of intense ultrashort pulses. Crit Rev Biomed Eng 38(3):255–304

    Article  CAS  PubMed  Google Scholar 

  15. Kolb NJF, Xiao S, Camp JT, Migliaccio M, Bajracharya C, Schoenbach KH (2010) Sub-nanosecond electrical pulses for medical therapies and imaging. In: Proceedings of the 4th European Conference Antennas and Propagation 12–16 Apr 1–5

  16. Kumar P, Baum CE, Altunc S, Buchenauer J, Xiao S, Christodoulou CG, Schamiloglu E, Schoenbach KH (2011) A hyperband antenna to launch and focus fast high-voltage pulses onto biological targets. IEEE Trans Microw Theory Tech 59:1090–1101

    Article  Google Scholar 

  17. Kuster N, Schonborn F (2000) Recommended minimal requirements and development guidelines for exposure setups of bio-experiments addressing the health risk concern of wireless communications. Bioelectromagnetics 21:508–514

    Article  CAS  PubMed  Google Scholar 

  18. Mancuso M, Giardullo P et al (2013) Dose and spatial effects in long distance radiation signaling in vivo: implications for abscopal tumorigenesis. Int J Rad Oncol Biol Phys 85:813–819

    Article  Google Scholar 

  19. Merla C, El Amari S et al (2010) A 10 ohms high voltage nanosecond pulse generator. IEEE Trans Microw Theory Tech 58:4079–4085

    Article  Google Scholar 

  20. Merla C, Paffi A, D’Attis A, Pinto R, Liberti M, Lovisolo GA, Apollonio F (2011) Design and characterization of a Wi-Fi loop antenna suitable for in vivo experiments. IEEE Antenna Wirel Prop Lett 10:896–899

    Article  Google Scholar 

  21. Merla C, Paffi A, Monaco P, Calderaro T, Apollonio F, Marino C, Vernier PT, Liberti M (2015) Design of an applicator for nsPEF exposure of newborn mice. In: Tomaz J, Kramar P (eds) Proceedings of IFMBE 1st world congress on electroporation and pulsed electric fields in biology medicine and food and environmental technologies, 1st edn. Springer, Singapur, pp 228–231

    Google Scholar 

  22. Nucitelli et al (2006) Nanosecond pulsed electric field cause melanoma to self-destruct. Biochem Biophys Res Commun 343:351–360

    Article  Google Scholar 

  23. Nucitelli et al (2010) Optimized nanosecond pulsed electric field therapy can cause murine malignant melanomas to self-destruct with a single treatment. Int J of Cancer 127:1727–1736

    Article  Google Scholar 

  24. Paffi A, Merla C et al (2013) Microwave exposure systems for in vivo biological experiments: a systematic review. IEEE Trans Microw Theory Tech 61(5):1980–1993

    Article  Google Scholar 

  25. Paffi A, Liberti M et al (2015) In vitro exposure: linear and non-linear thermodynamic events in petri dishes. Bioelectromagnetics 36(7):527–537

    Article  PubMed  Google Scholar 

  26. Pinto R, Lopresto V, Galloni P, Marino C, Mancini S, Lodato R, Pioli C, Lovisolo GA (2010) Dosimetry of a set-up for the exposure of newborn mice to 2.45-GHz WiFi frequencies. Rad Prot Dosim. doi:10.1093/rpd/ncq129

    Google Scholar 

  27. Rebersek M, Miklavcic D, Bertacchini C, Sack M (2014) Cell membrane electroporation—part 3: the equipment. Electr Insul Mag IEEE 30(3):8–18

    Article  Google Scholar 

  28. Rogers WR, Merritt JH, Comeaux JA Jr, Kuhnel CT, Moreland DF, Teltschik DG, Lucas JH, Murphy MR (2004) Strength duration curve for an electrically excitable tissue extended down to near 1 nanosecond. IEEE Trans Plasma Sci 32:1587–1599

    Article  Google Scholar 

  29. Schmid G, Kuster N (2015) The discrepancy between maximum in vitro exposure levels and realistic conservative exposure levels of mobile phones operating at 900/1800 MHz. Bioelectromagnetics 36(2):133–148

    Article  PubMed  Google Scholar 

  30. Schoenbach KH, Xiao S, Joshi RP, Camp JT, Heeren T, Kolb JF, Beebe SJ (2008) The effect of intense subnanosecond electric pulses on biological cells. IEEE Trans Plasma Sci 36(2):414–422

    Article  Google Scholar 

  31. Semenov I, Xiao S, Kang D, Schoenbach KH, Pakhomov AG (2015) Cell stimulation and calcium mobilization by picosecond electric pulses. Bioelectrochemistry 105:65–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Silve A, Vazinet R et al (2010) Implementation of a broad band high level electric field sensor in biological exposure device. In: IEEE proceedings of IPMHVC, pp 711–714

  33. Soueid M, Kohler S, Carr L, Bardet SM, O’Connor RP, Leveque P, Arnaud-Cormos D (2014) Electromagnetic analysis of an aperture modified TEM cell including an ITO layer for real-time observation of biological cells exposed to microwaves. Prog Electromagn Res 149:193–204

    Article  Google Scholar 

  34. Suraj P, Gupta VR (2009) Analysis of rectangular monopole patch antenna. Int J Recent Trends Eng 2(5):106–109

    Google Scholar 

  35. Tourette S, Fortino N et al (2008) Compact UWB printed antennas for low frequency applications matched to different transmission lines. Microw Opt Tech Lett 49:1282–1287

    Article  Google Scholar 

  36. Vernier PT, Levine ZA, Ho M-C, Xiao S, Semenov I, Pakhomov AG (2015) Picosecond and terahertz perturbation of interfacial water and electropermeabilization of biological membranes. J Memb Biol 248(5):837–847

    Article  CAS  Google Scholar 

  37. Wu T, Hadjem A, Wong M-F, Gati A, Picon O, Wiart J (2010) Whole-body new-born and young rats’ exposure assessment in a reverberating chamber operating at 2.4 GHz. Phys Med Biol 55(6):1619–1630

    Article  PubMed  Google Scholar 

  38. Xiao S, Altunc S, Kumar P, Baum CE, Schoenbach KH (2010) A reflector antenna for focusing in the near field. IEEE Antennas Wirel Propag Lett 9:12–15

    Article  Google Scholar 

  39. Xiao S, Guo S, Nesin V, Heller R, Schoenbach KH (2011) Subnanosecond electric pulses cause membrane permeabilization and cell death. IEEE Trans Biomed Eng 58(5):1239–1245

    Article  PubMed  Google Scholar 

  40. Yin D, Yang WG, Weissmber J, Goff CB, Chen W, Kuwayama Y, Leiter A, Xing H, Meixel A, Gaut D, Kirkbir F, Sawcer D, Vernier PT, Said JW, Gundersen MA, Koeffler HP (2012) Cutaneous papilloma, and squamous cell carcinoma therapy utilizing nanosecond pulsed electric fields (nsPEF). Plos One 7(8):e43891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank COST EPI4Bio2Med European Network for Development of Electroporation-Based Technologies and Treatments for a Short Term Scientific Mission (Grant No. TD1104-300415-056739) to C. Merla. This project was performed within the framework of the Joint IIT-Sapienza LAB on Life-NanoScience Project (81/13 16-04-2013). Authors acknowledge the experimental support of Dr. Rosanna Pinto in E field measurements and the technical assistance of Alessandro Zambotti and Sergio Mancini at the ENEA facilities. ML and FA thanks Marta Parazzini and Paolo Ravazzani for their positive feeling on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Merla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merla, C., Apollonio, F., Paffi, A. et al. Monopole patch antenna for in vivo exposure to nanosecond pulsed electric fields. Med Biol Eng Comput 55, 1073–1083 (2017). https://doi.org/10.1007/s11517-016-1547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1547-0

Keywords

Navigation