Skip to main content
Log in

A subnanosecond electric pulse exposure system for biological cells

  • Special Issue - Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

An exposure system adapted for use on a microscope stage was constructed for studying the effects of high electric field, subnanosecond pulses on biological cells. The system has a bandpass of 3 GHz and is capable of delivering high-voltage electric pulses (6.2 kV) to the electrodes, which are two tungsten rods (100 μm in diameter) in parallel with a gap distance of 170 μm. Electric pulses are delivered to the electrodes through a π network, which serves as an attenuator as well as an impedance matching unit to absorb the reflection at the electrodes. By minimizing the inductance of the pulse delivery system, it was possible to generate electric fields of up to 200 kV/cm with a pulse duration of 500 ps at the surface of the cover slip under the microscope. The electric field at the cover slip was found to be homogenous over an area of 50–70 μm. Within this area, neuroblastoma cells placed on the cover slip were studied with respect to membrane potential changes caused by subnanosecond pulses. This allowed us, for the first time, to demonstrate depolarization of the cell membrane potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barth JE, Sarjeant WJ (1981) Direct subnanosecond voltage monitors. In: IEEE pulsed power conference, digests of technical papers, p 171

  2. Camp JT, Jing Y, Zhuang J, Kolb JF, Beebe SJ, Song J, Joshi RP, Xiao S, Schoenbach KH (2012) Cell death induced by subnanosecond pulsed electric fields at elevated temperatures. IEEE Trans Plasma Sci 40(10):2334–2347

    Article  CAS  Google Scholar 

  3. Chretiennot T, Catrain A, Croizer M, Vezinet R (2015) New concepts for the application of intense electromagnetic fields to biological samples. In: 1st World congress on electroporation and pulsed electric fields in biology, medicine and food & environmental technologies, Portoroz, Slovenija, September 6–10, 2015

  4. Cobb BL, Jauchem JR, Mason PA, Dooley MP, Miller SA, Ziriax JM, Murphy MR (2000) Neural and behavioral teratological evaluation of rats exposed to ultra-wideband electromagnetic fields. Bioelectromagnetics 21:524–537

    Article  CAS  PubMed  Google Scholar 

  5. Cole KS (1937) Electric impedance of marine egg membranes. Trans Faraday Soc 23:966

    Article  Google Scholar 

  6. Craddock I (2007) Wideband antennas for biomedical imaging (Chapter 20). In: Allen B, Dohler M, Okon EE, Malik WQ, Brown AK, Edwards DJ (eds) Ultra-wideband antennas and propagation for communications, radar and imaging. Wiley

  7. Croce RP, De Vita A, Pierro V, Pinto IM (2010) A thermal model for pulsed EM field exposure effects in cells at nonthermal levels. IEEE Trans Plasma Sci 38(2):149–155

    Article  CAS  Google Scholar 

  8. Delemotte L, Tarek M (2012) Molecular dynamics simulations of lipid membrane electroporation. J Membr Biol 245:531–543

    Article  CAS  PubMed  Google Scholar 

  9. Frey W, White JA, Price RO, Blackmore PF, Joshi RP, Nuccitelli R, Beebe SJ, Schoenbach KH, Kolb JF (2006) Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J 90(10):3608–3615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gowrishankar TR, Weaver JC (2006) Electrical behavior and pore accumulation in a multicellular model for conventional and supra-electroporation. Biochem Biophys Res Commun 349:643–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hua YY, Wang XS, Zhang Y, Yao CG, Zhang XM, Xiong ZA (2012) Intense picosecond pulsed electric fields induce apoptosis through a mitochondrial-mediated pathway in HeLa cells. Mol Med Rep 5:981–987

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jauchem JR, Seaman RL, Lehnert H, Mathur SP, Ryan KL, Frei MR, Hurt WD (1998) Ultra-wideband electromagnetic pulses: lack of effects on heart rate and blood pressure during two-minute exposures of rats. Bioelectromagnetics 19:330–333

    Article  CAS  PubMed  Google Scholar 

  13. Jauchem JR, Frei MR, Ryan KL, Merritt JH, Murphy MR (1999) Lack of effects on heart rate and blood pressure in ketamine-anesthetized rats briefly exposed to ultra-wideband electromagnetic pulses. IEEE Trans Biomed Eng 46:117–120

    Article  CAS  PubMed  Google Scholar 

  14. Ji Z, Hagness SC, Booske JH, Mathur S, Meltz ML (2006) FDTD analysis of a gigahertz TEM cell for ultra-wideband pulse exposure studies of biological specimens. IEEE Trans Biomed Eng 53(5):780–789

    Article  PubMed  Google Scholar 

  15. Kolb JF, Joshi RP, Xiao S, Schoenbach KH (2008) Streamers in water and other dielectric liquids. J Phys D Appl Phys 41:234007

    Article  Google Scholar 

  16. Kotnik T, Miklavcic D (2000) Second-order model of membrane electric field induced by alternating external electric fields. IEEE Trans Biomed Eng 47(8):1074–1081

    Article  CAS  PubMed  Google Scholar 

  17. Kotnik T, Miklavcic D (2000) Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric fields. Bioelectromagnetics 21:385–394

    Article  CAS  PubMed  Google Scholar 

  18. Midi NS, Sasaki K, Ohyama R, Shinyashiki N (2014) Broadband complex dielectric constants of water and sodium chloride aqueous solutions with different DC conductivities. IEEJ Trans Electr Electron Eng 9(S1):S8–S12

    Article  CAS  Google Scholar 

  19. Pakhomov AG, Kolb JF, White JA, Joshi RP, Xiao S, Schoenbach KH (2007) Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF). Bioelectromagnetics 28:655–663

    Article  CAS  PubMed  Google Scholar 

  20. Rogers WR, Merritt JH, Comeaux JA, Kuhnel CT, Moreland DF, Teltschik DG, Lucas JH, Murphy MR (2004) Strength-duration curve for an electrically excitable tissue extended down to near 1 nanosecond. IEEE Trans Plasma Sci 32:1587–1599

    Article  Google Scholar 

  21. Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22(6):440–448

    Article  CAS  PubMed  Google Scholar 

  22. Schoenbach KH, Xiao S, Joshi RP, Camp JT, Heeren T, Kolb JF, Beebe SJ (2008) The effect of intense subnanosecond electrical pulses on biological cells. IEEE Trans Plasma Sci 36(2):414–422

    Article  Google Scholar 

  23. Semenov I, Xiao S, Kang D, Schoenbach KH, Pakhomov AG (2015) Cell stimulation and calcium mobilization by picosecond electric pulses. Bioelectrochemistry 105:65–71. doi:10.1016/j.bioelechem.2015.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Teissie J, Rols MP (1994) Manipulation of cell cytoskeleton affects the lifetime of cell membrane electropermeabilization. Ann N Y Acad Sci 720:98–110

    Article  CAS  Google Scholar 

  25. Tsong TY (1991) Electorporation of cell membranes. Biophys J 60:297–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vernier PT (2010) Nanoscale restructuring of lipid bilayers in nanosecond electric fields. In: Pakhomov AG, Miklavcic D, Markov M (eds) Advanced elecroporation techniques in medicine and biology. CRC Press, Boca Raton, pp 161–176

    Google Scholar 

  27. Vernier PT, Ziegler MJ, Sun Y, Chang WV, Gundersen MA, Tieleman DP (2006) Nanopore formation and phosphatidylserine externalization in a phospholipid bilayer at high transmembrane potential. J Am Chem Soc 128(19):6288–6289

    Article  CAS  PubMed  Google Scholar 

  28. Walters TJ, Mason PA, Sherry CJ, Steffen C, Merritt JH (1995) No detectable bioeffects following acute exposure to high peak power ultra-wide band electromagnetic radiation in rats. Aviat Space Environ Med 66:562–567

    CAS  PubMed  Google Scholar 

  29. Weaver JC, Chizmadzhev Y (2007) Electroporation (Chapter 9). In: Barnes F, Greenebaum B (eds) Biological and medical aspects of electromagnetic fields. Handbook of biological effects of electromagnetic fields. CRC Press, Boca Raton

  30. Xiao S, Guo S, Nesin V, Heller R, Schoenbach KH (2011) Subnanosecond electric pulses cause membrane permeabilization and cell death. IEEE Trans Biomed Eng 58(5):1239–1245

    Article  PubMed  Google Scholar 

  31. Zimmermann U (1982) Electric field-mediated fusion and related electrical phenomena. Biochim Biophys Acta 694:227–277

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an R21 Grant (1R21EB016912-01A1) from the National Institute of Biomedical Imaging and Bioengineering, NIH. The authors would like to acknowledge with great appreciation the editing of the manuscript by Ms. Hollie Ryan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, S., Semenov, I., Petrella, R. et al. A subnanosecond electric pulse exposure system for biological cells. Med Biol Eng Comput 55, 1063–1072 (2017). https://doi.org/10.1007/s11517-016-1516-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1516-7

Keywords

Navigation