Skip to main content
Log in

Modelling the effect of insulin on the disposal of meal-attributable glucose in type 1 diabetes

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The management of postprandial glucose excursions in type 1 diabetes has a major impact on overall glycaemic control. In this work, we propose and evaluate various mechanistic models to characterize the disposal of meal-attributable glucose. Sixteen young volunteers with type 1 diabetes were subject to a variable-target clamp which replicated glucose profiles observed after a high-glycaemic-load (\(n=8\)) or a low-glycaemic-load (\(n=8\)) evening meal. [6,6-\(^{2}\hbox {H}_2\)] and [U-\(^{13}\hbox {C}\);1,2,3,4,5,6,6-\(^{2}\hbox {H}_{7}\)] glucose tracers were infused to, respectively, mimic: (a) the expected post-meal suppression of endogenous glucose production and (b) the appearance of glucose due to a standard meal. Six compartmental models (all a priori identifiable) were proposed to investigate the remote effect of circulating plasma insulin on the disposal of those glucose tracers from the non-accessible compartments, representing e.g. interstitium. An iterative population-based parameter fitting was employed. Models were evaluated attending to physiological plausibility, posterior identifiability of their parameter estimates, accuracy—via weighted fitting residuals—and information criteria (i.e. parsimony). The most plausible model, best representing our experimental data, comprised: (1) a remote effect x of insulin active above a threshold \(x_{C}\) = 1.74 (0.81–2.50) \(\cdot \,10^{-2}\) min\(^{-1}\) [median (inter-quartile range)], with parameter \(x_{C}\) having a satisfactory support: coefficient of variation CV = 42.33 (31.34–65.34) %, and (2) steady-state conditions at the onset of the experiment (\(t=0\)) for the compartment representing the remote effect, but not for the masses of the tracer that mimicked endogenous glucose production. Consequently, our mechanistic model suggests non-homogeneous changes in the disposal rates for meal-attributable glucose in relation to plasma insulin. The model can be applied to the in silico simulation of meals for the optimization of postprandial insulin infusion regimes in type 1 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abu-Rmileh A, Garcia-Gabin W, Zambrano D (2010) A robust sliding mode controller with internal model for closed-loop artificial pancreas. Med Biol Eng Comput 48(12):1191–1201. doi:10.1007/s11517-010-0665-3

    Article  PubMed  Google Scholar 

  2. Ahola AJ, Mäkimattila S, Saraheimo M, Mikkilä V, Forsblom C, Freese R, Groop P, FinnDIANE Study Group (2010) Many patients with type 1 diabetes estimate their prandial insulin need inappropriately. J Diabetes 2(3):194–202. doi:10.1111/j.1753-0407.2010.00086.x

    Article  PubMed  Google Scholar 

  3. Basu R, Di Camillo B, Toffolo G, Basu A, Shah P, Vella A, Rizza R, Cobelli C (2003) Use of a novel triple-tracer approach to assess postprandial glucose metabolism. Am J Physiol Endocrinol Metab 284(1):E55–69. doi:10.1152/ajpendo.00190.2001

    Article  CAS  PubMed  Google Scholar 

  4. Borg R, Kuenen JC, Carstensen B, Zheng H, Nathan DM, Heine RJ, Nerup J, Borch-Johnsen K, Witte DR, ADAG Study Group (2010) Associations between features of glucose exposure and A1C: the A1C-derived average glucose (ADAG) study. Diabetes 59(7):1585–1590. doi:10.2337/db09-1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carson ER, Cobelli C, Finkelstein L (1983) The mathematical modeling of metabolic and endocrine systems: model formulation, identification, and validation, 1st edn. Wiley, New York

    Google Scholar 

  6. Clarke WL, Anderson S, Breton M, Patek S, Kashmer L, Kovatchev B (2009) Closed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithm: the Virginia experience. J Diabetes Sci Technol 3(5):1031–1038

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dalla Man C, Camilleri M, Cobelli C (2006) A system model of oral glucose absorption: validation on gold standard data. IEEE Trans Bio Med Eng 53(12 Pt 1):2472–2478. doi:10.1109/TBME.2006.883792

    Google Scholar 

  8. Dalla Man C, Rizza RA, Cobelli C (2007) Meal simulation model of the glucose-insulin system. IEEE Trans Bio Med Eng 54(10):1740–1749. doi:10.1109/TBME.2007.893506

    Article  Google Scholar 

  9. Elleri D, Allen JM, Harris J, Kumareswaran K, Nodale M, Leelarathna L, Acerini CL, Haidar A, Wilinska ME, Jackson N, Umpleby AM, Evans ML, Dunger DB, Hovorka R (2013) Absorption patterns of meals containing complex carbohydrates in type 1 diabetes. Diabetologia 56(5):1108–1117. doi:10.1007/s00125-013-2852-x

    Article  CAS  PubMed  Google Scholar 

  10. Galvanin F, Barolo M, Macchietto S, Bezzo F (2010) Optimal design of clinical tests for the identification of physiological models of type 1 diabetes in the presence of model mismatch. Med Biol Eng Comput 49(3):263–277. doi:10.1007/s11517-010-0717-8

    Article  PubMed  Google Scholar 

  11. Grosman B, Dassau E, Zisser HC, Jovanovic L, Doyle FJ (2010) Zone model predictive control: a strategy to minimize hyper- and hypoglycemic events. J Diabetes Sci Technol 4(4):961–975

    Article  PubMed  PubMed Central  Google Scholar 

  12. Haidar A, Elleri D, Allen JM, Harris J, Kumareswaran K, Nodale M, Acerini CL, Wilinska ME, Jackson N, Umpleby AM, Evans ML, Dunger DB, Hovorka R (2012) Validity of triple- and dual-tracer techniques to estimate glucose appearance. Am J Physiol Endocrinol Metab 302(12):E1493–1501. doi:10.1152/ajpendo.00581.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hovorka R (2011) Closed-loop insulin delivery: from bench to clinical practice. Nat Rev Endocrinol 7(7):385–395. doi:10.1038/nrendo.2011.32

    Article  CAS  PubMed  Google Scholar 

  14. Hovorka R, Jayatillake H, Rogatsky E, Tomuta V, Hovorka T, Stein DT (2007) Calculating glucose fluxes during meal tolerance test: a new computational approach. Am J Physiol Endocrinol Metab 293(2):E610–619. doi:10.1152/ajpendo.00546.2006

    Article  CAS  PubMed  Google Scholar 

  15. Hovorka R, Shojaee-Moradie F, Carroll PV, Chassin LJ, Gowrie IJ, Jackson NC, Tudor RS, Umpleby AM, Jones RH (2002) Partitioning glucose distribution/transport, disposal, and endogenous production during IVGTT. Am J Physiol Endocrinol Metab 282(5):E992–1007. doi:10.1152/ajpendo.00304.2001

    Article  CAS  PubMed  Google Scholar 

  16. Hovorka R, Vicini P (2001) Parameter estimation. In: Carson E, Cobelli C (eds) Modeling methodology for physiology and medicine. Academic Press, London, pp 107–151

    Chapter  Google Scholar 

  17. Lanzola G, Toffanin C, Di Palma F, Del Favero S, Magni L, Bellazzi R (2015) Designing an artificial pancreas architecture: the AP@home experience. Med Biol Eng Comput 53(12):1271–1283. doi:10.1007/s11517-014-1231-1

    Article  PubMed  Google Scholar 

  18. Laurenzi A, Bolla AM, Panigoni G, Doria V, Uccellatore A, Peretti E, Saibene A, Galimberti G, Bosi E, Scavini M (2011) Effects of carbohydrate counting on glucose control and quality of life over 24 weeks in adult patients with type 1 diabetes on continuous subcutaneous insulin infusion: a randomized, prospective clinical trial (GIOCAR). Diabetes Care 34(4):823–827. doi:10.2337/dc10-1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Magni L, Forgione M, Toffanin C, Dalla Man C, Kovatchev B, De Nicolao G, Cobelli C (2009) Run-to-run tuning of model predictive control for type 1 diabetes subjects: in silico trial. J Diabetes Sci Technol 3(5):1091–1098

    Article  PubMed  PubMed Central  Google Scholar 

  20. Priebe MG, Wachters-Hagedoorn RE, Heimweg JAJ, Small A, Preston T, Elzinga H, Stellaard F, Vonk RJ (2008) An explorative study of in vivo digestive starch characteristics and postprandial glucose kinetics of wholemeal wheat bread. Eur J Nutr 47(8):417–423. doi:10.1007/s00394-008-0743-6

    Article  CAS  PubMed  Google Scholar 

  21. Rosenblatt J, Chinkes D, Wolfe M, Wolfe RR (1992) Stable isotope tracer analysis by GC-MS, including quantification of isotopomer effects. Am J Physiol 263(3 Pt 1):E584–596

    CAS  PubMed  Google Scholar 

  22. Steimer JL, Mallet A, Golmard JL, Boisvieux JF (1984) Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixed-effect model. Drug Metab Rev 15(1–2):265–292. doi:10.3109/03602538409015066

    Article  CAS  PubMed  Google Scholar 

  23. Toffolo G, Dalla Man C, Cobelli C, Sunehag AL (2008) Glucose fluxes during OGTT in adolescents assessed by a stable isotope triple tracer method. J Pediatr Endocrinol Metab 21(1):31–45

    Article  CAS  PubMed  Google Scholar 

  24. Turksoy K, Bayrak ES, Quinn L, Littlejohn E, Cinar A (2013) Multivariable adaptive closed-loop control of an artificial pancreas without meal and activity announcement. Diabetes Technol Ther 15(5):386–400. doi:10.1089/dia.2012.0283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vahidi O, Kwok KE, Gopaluni RB, Knop FK (2015) A comprehensive compartmental model of blood glucose regulation for healthy and type 2 diabetic subjects. Med Biol Eng Comput. doi:10.1007/s11517-015-1406-4

    PubMed  Google Scholar 

  26. Wachters-Hagedoorn RE, Priebe MG, Heimweg JAJ, Heiner AM, Elzinga H, Stellaard F, Vonk RJ (2007) Low-dose acarbose does not delay digestion of starch but reduces its bioavailability. Diabet Med 24(6):600–606. doi:10.1111/j.1464-5491.2007.02115.x

    Article  CAS  PubMed  Google Scholar 

  27. Wachters-Hagedoorn RE, Priebe MG, Heimweg JAJ, Heiner AM, Englyst KN, Holst JJ, Stellaard F, Vonk RJ (2006) The rate of intestinal glucose absorption is correlated with plasma glucose-dependent insulinotropic polypeptide concentrations in healthy men. J Nutr 136(6):1511–1516

    CAS  PubMed  Google Scholar 

  28. Wald A, Wolfowitz J (1940) On a test whether two samples are from the same population. Ann Math Stat 11(2):147–162

    Article  Google Scholar 

  29. Wilinska M, Chassin L, Schaller H, Schaupp L, Pieber T, Hovorka R (2005) Insulin kinetics in type-1 diabetes: continuous and bolus delivery of rapid acting insulin. IEEE Trans Biomed Eng 52(1):3–12. doi:10.1109/TBME.2004.839639

    Article  PubMed  Google Scholar 

  30. Wilinska ME, Budiman ES, Taub MB, Elleri D, Allen JM, Acerini CL, Dunger DB, Hovorka R (2009) Overnight closed-loop insulin delivery with model predictive control: assessment of hypoglycemia and hyperglycemia risk using simulation studies. J Diabetes Sci Technol 3(5):1109–1120

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zisser H, Robinson L, Bevier W, Dassau E, Ellingsen C, Doyle FJ, Jovanovic L (2008) Bolus calculator: a review of four ‘smart’ insulin pumps. Diabetes Technol Ther 10(6):441–444. doi:10.1089/dia.2007.0284

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando García-García.

Ethics declarations

Informed consent

Informed consent was obtained from all individual participants included in the study, which was approved by the Addenbrooke’s Hospital (University of Cambridge, UK) ethics committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This work was partly funded by a doctoral research fellowship from the Universidad Politécnica de Madrid (Spain) and by a travel grant from the Spanish Ministry of Education. The clinical study, from which data employed in this work were obtained, was acknowledged in [9] and its funding disclosed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-García, F., Hovorka, R., Wilinska, M.E. et al. Modelling the effect of insulin on the disposal of meal-attributable glucose in type 1 diabetes. Med Biol Eng Comput 55, 271–282 (2017). https://doi.org/10.1007/s11517-016-1509-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1509-6

Keywords

Navigation