Skip to main content

Feature selection methods for accelerometry-based seizure detection in children

Abstract

We investigate the application of feature selection methods and their influence on distinguishing nocturnal motor seizures in epileptic children from normal nocturnal movements using accelerometry signals. We studied two feature selection methods applied one after the other to reduce the complexity and computation costs of least-squares support vector machine (LS-SVM) models. Simultaneous feature selection analyses were performed for each seizure type individually and jointly. Starting from 140 features, a filter method based on mutual information was applied to remove irrelevant and redundant features. The obtained subset was further reduced through a wrapper feature selection strategy using an LS-SVM classifier with both forward search and backward elimination. The discriminative power of each feature subset was evaluated on the test data in terms of the area under the receiver operating characteristic curve, sensitivity, and false detection rate per hour. We showed that, by using only a filter method for feature selection, it was possible to obtain classification results of comparable or slightly reduced performance with respect to the complete feature set. The attained results could facilitate further development of accelerometry-based seizure detection and alarm systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Becq G, Bonnet S, Minotti L, Antonakios M, Guillemaud R, Kahane P (2011) Classification of epileptic motor manifestations using inertial and magnetic sensors. Comput Biol Med 41(1):46–55

    Article  PubMed  Google Scholar 

  2. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, Van Emde Boas W, Engel J, French J, Glauser TA, Mathern GW et al (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51(4):676–685

    Article  PubMed  Google Scholar 

  3. Botev Z, Grotowski J, Kroese D et al (2010) Kernel density estimation via diffusion. Ann Stat 38(5):2916–2957

    Article  Google Scholar 

  4. Carlson C, Arnedo V, Cahill M, Devinsky O (2009) Detecting nocturnal convulsions: efficacy of the MP5 monitor. Seizure 18(3):225–227

    Article  PubMed  Google Scholar 

  5. Conradsen I, Beniczky S, Hoppe K, Wolf P, Sorensen HB (2012) Automated algorithm for generalized tonic–clonic epileptic seizure onset detection based on sEMG zero-crossing rate. IEEE Trans Biomed Eng 59(2):579–585

    Article  PubMed  Google Scholar 

  6. Conradsen I, Beniczky S, Wolf P, Kjaer TW, Sams T, Sorensen HB (2012) Automatic multi-modal intelligent seizure acquisition (MISA): system for detection of motor seizures from electromyographic data and motion data. Comput Methods Programs Biomed 107(2):97–110

    Article  PubMed  Google Scholar 

  7. Cuppens K, Karsmakers P, Van de Vel A, Bonroy B, Milosevic M, Luca S, Croonenborghs T, Ceulemans B, Lagae L, Van Huffel S, Vanrumste B (2014) Accelerometry-based home monitoring for detection of nocturnal hypermotor seizures based on novelty detection. IEEE J Biomed Health Inform 18(3):1026–1033

    Article  PubMed  Google Scholar 

  8. Cuppens K, Lagae L, Ceulemans B, Van Huffel S, Vanrumste B (2009) Detection of nocturnal frontal lobe seizures in pediatric patients by means of accelerometers: a first study. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 6608–6611

  9. Cuppens K, Lagae L, Ceulemans B, Van Huffel S, Vanrumste B (2010) Automatic video detection of body movement during sleep based on optical flow in pediatric patients with epilepsy. Med Biol Eng Comput 48(9):923–931

    Article  PubMed  Google Scholar 

  10. Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3(02):185–205

    CAS  Article  PubMed  Google Scholar 

  11. Fisher RS, Boas WvE, Blume W, Elger C, Genton P, Lee P, Engel J (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470–472

    Article  PubMed  Google Scholar 

  12. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    Google Scholar 

  13. Hunyadi B, Signoretto M, Van Paesschen W, Suykens JA, Van Huffel S, De Vos M (2012) Incorporating structural information from the multichannel EEG improves patient-specific seizure detection. Clin Neurophysiol 123(12):2352–2361

    Article  PubMed  Google Scholar 

  14. Karantonis D, Narayanan M, Mathie M, Lovell N, Celler B (2006) Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans Inf Technol Biomed 10(1):156–167

    Article  PubMed  Google Scholar 

  15. Kohavi R, John G (1997) Wrappers for feature subset selection. Artif Intell 97(1):273–324

    Article  Google Scholar 

  16. Kramer U, Kipervasser S, Shlitner A, Kuzniecky R (2011) A novel portable seizure detection alarm system: preliminary results. J Clin Neurophysiol 28(1):36

    Article  PubMed  Google Scholar 

  17. Lockman J, Fisher R, Olson D (2011) Detection of seizure-like movements using a wrist accelerometer. Epilepsy Behav 20(4):638–641

    Article  PubMed  Google Scholar 

  18. Logesparan L, Casson AJ, Rodriguez-Villegas E (2012) Optimal features for online seizure detection. Med Biol Eng Comput 50(7):659–669

    Article  PubMed  Google Scholar 

  19. Lüders H, Acharya J, Baumgartner C, Benbadis S, Bleasel A, Burgess R, Dinner D, Ebner A, Foldvary N, Geller E et al (1998) Semiological seizure classification*. Epilepsia 39(9):1006–1013

    Article  PubMed  Google Scholar 

  20. Nijsen T, Aarts R, Arends J, Cluitmans P (2009) Automated detection of tonic seizures using 3-D accelerometry. In: Proceedings of the 4th European conference of the international federation for medical and biological engineering. Springer, pp 188–191

  21. Nijsen T, Aarts R, Cluitmans P, Griep P (2010) Time–frequency analysis of accelerometry data for detection of myoclonic seizures. IEEE Trans Inf Technol Biomed 14(5):1197–1203

    Article  PubMed  Google Scholar 

  22. Pelckmans K, Suykens JA, Van Gestel T, De Brabanter J, Lukas L, Hamers B, De Moor B, Vandewalle J (2002) LS-SVMlab: a matlab/c toolbox for least squares support vector machines. Tutorial. KULeuven-ESAT, Leuven, Belgium

  23. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238

    Article  PubMed  Google Scholar 

  24. Poh MZ, Loddenkemper T, Reinsberger C, Swenson NC, Goyal S, Sabtala MC, Madsen JR, Picard RW (2012) Convulsive seizure detection using a wrist-worn electrodermal activity and accelerometry biosensor. Epilepsia 53(5):e93–e97

    Article  PubMed  Google Scholar 

  25. Preece S, Goulermas J, Kenney L, Howard D (2009) A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans Biomed Eng 56(3):871–879

    Article  PubMed  Google Scholar 

  26. Schulc E, Unterberger I, Saboor S, Hilbe J, Ertl M, Ammenwerth E, Trinka E, Them C (2011) Measurement and quantification of generalized tonic–clonic seizures in epilepsy patients by means of accelerometry - An explorative study. Epilepsy Res 95(1):173–183

    Article  PubMed  Google Scholar 

  27. Sheikholeslami N, Stashuk D (1997) Supervised mutual-information based feature selection for motor unit action potential classification. Med Biol Eng Comput 35(6):661–670

    CAS  Article  PubMed  Google Scholar 

  28. Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machines. World Scientific Pub. Co., Singapore

    Book  Google Scholar 

  29. Temko A, Thomas E, Marnane W, Lightbody G, Boylan G (2011) EEG-based neonatal seizure detection with support vector machines. Clin Neurophysiol 122(3):464–473

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Vapnik V (1999) The nature of statistical learning theory. Springer, Berlin

    Google Scholar 

  31. Van de Vel A, Cuppens K, Bonroy B, Milosevic M, Jansen K, Van Huffel S, Vanrumste B, Lagae L, Ceulemans B (2013) Non-EEG seizure-detection systems and potential SUDEP prevention: state of the art. Seizure 22:345–355

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by Bijzonder Onderzoeksfonds KU Leuven (BOF); Center of Excellence (CoE): PFV/10/002 (OPTEC); Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (FWO): G.0108.11 (Compressed Sensing), G.0869.12N (Tumor imaging), and G.0A5513N (Deep brain stimulation); iMinds Medical Information Technologies: Dotatie-Strategisch basis onderzoek (SBO-2015); Belgian Federal Science Policy Office: IUAP P7/19/(DYSCO, ‘Dynamical systems, control and optimization’, 2012–2017); EU: European Union’s Seventh Framework Programme (FP7/2007–2013): EU MC ITN TRANSACT 2012, 316679, ERASMUS EQR: Community service engineer, 539642-LLP-1-2013; and European Research Council: ERC Advanced Grant, 339804 BIOTENSORS. This paper reflects only the authors’ views, and the Union is not liable for any use that may be made of the contained information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Van Huffel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1265 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Milošević, M., Van de Vel, A., Cuppens, K. et al. Feature selection methods for accelerometry-based seizure detection in children. Med Biol Eng Comput 55, 151–165 (2017). https://doi.org/10.1007/s11517-016-1506-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1506-9

Keywords

  • Epilepsy
  • Children
  • Seizure detection
  • Accelerometers
  • Feature selection