Skip to main content

Advertisement

Log in

Implantable neurotechnologies: electrical stimulation and applications

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Neural stimulation using injected electrical charge is widely used both in functional therapies and as an experimental tool for neuroscience applications. Electrical pulses can induce excitation of targeted neural pathways that aid in the treatment of neural disorders or dysfunction of the central and peripheral nervous system . In this review, we summarize the recent trends in the field of electrical stimulation for therapeutic interventions of nervous system disorders, such as for the restoration of brain, eye, ear, spinal cord, nerve and muscle function . Neural prosthetic applications are discussed, and functional electrical stimulation parameters for treating such disorders are reviewed. Important considerations for implantable packaging and enhancing device reliability are also discussed. Neural stimulators are expected to play a profound role in implantable neural devices that treat disorders and help restore functions in injured or disabled nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agarwal S, Tiolo R, Kobetic R, Miller M, Bieri C, Kukke S, Rohde L, Davis J (2003) Long-term user perceptions of an implanted neuroprosthesis for exercise, standing, and transfers after spinal cord injury. J Rehabil Res Dev 40(3):241–252

    PubMed  Google Scholar 

  2. Angeli C, Edgerton V, Gerasimenko Y, Harkema S (2014) Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137(5):1394–1409

    Article  PubMed  PubMed Central  Google Scholar 

  3. Badia J, Boretius T, Andreu D, Azevedo-Coste C, Stieglitz T, Navarro X (2011) Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles. J Neural Eng 8(3):1–13

    Article  Google Scholar 

  4. Benedicic M, Bosnjak R (2011) Intraoperative monitoring of the visual function using cortical potentials after electrical epidural stimulation of the optic nerve. Acta Neurochir 153:1919–1927

    Article  PubMed  Google Scholar 

  5. Bensmaia S, Miller L (2014) Restoring sensorimotor function through intracortical interfaces-progress and looming challenges. Nat Rev Neurosci 15:313–325

    Article  CAS  PubMed  Google Scholar 

  6. Berenyi A, Belluscio M, Mao D, Buzsaki G (2012) Closed loop control of epilepsy by transcranial electrical stimulation. Science 337(6095):735–737

    Article  CAS  PubMed  Google Scholar 

  7. Boretius T, Badiab J, Pascual-Font A, Schuettler M, Navarro X, Yoshida K, Stieglitz T (2010) A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens Bioelectron 26:62–69

    Article  CAS  PubMed  Google Scholar 

  8. Brindley G, Lewin W (1968) the sensations produced by electrical stimulation of the visual cortex. J Physiol 196:479–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brugger D, Butovas S, Bodgan M, Schwarz C (2011) Real-time adaptive microstimulation increases reliability of electrically evoked cortical potentials. IEEE Trans Biomed Eng 58(5):1483–1491

    Article  PubMed  Google Scholar 

  10. Bufalari I, Aprile T, Avenanti A, Russo F, Aglioti S (2007) Empathy for pain and touch in the human somatosensory cortex. Oxf Cereb Cortex 17(11):2553–2561

    Article  Google Scholar 

  11. Butson C (2012) Computational models of neuromodulation. Int Rev Neurobiol 107:5–22

    Article  PubMed  Google Scholar 

  12. Butterwick A, Vankov A, Huie P, Vijayraghavan K, Loudin J, Palanker D (2007) Progress towards a high-resolution retinal prosthesis. Proc SPIE 6426:1–9

    Google Scholar 

  13. Chattopadhyay S, Raines R (2014) Review collagen-based biomaterials for wound healing. Biopolymers 101(8):821–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chiang B, Fridman G, Dai C, Rahman M, Santina C (2011) Design and performance of a multichannel vestibular prosthesis that restores semicircular canal sensation in macaques. IEEE Trans Neural Syst Rehabil Eng 19(5):588–598

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chwalek K, Sood D, Cantley W, White J, Schomer M, Kaplan D (2015) Engineered 3d silk-collagen-based model of polarized neural tissue. J Vis Exp 104:1–7

    Google Scholar 

  16. Cicione R, Shivdasani M, Fallon J, Luu C, Allen P, Rathbone G, Shepherd R, Williams C (2012) Visual cortex responses to suprachoroidal electrical stimulation of the retina: effects of electrode return configuration. J Neural Eng 9(3):1–14

    Article  Google Scholar 

  17. Cogan S (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10:275–309

    Article  CAS  PubMed  Google Scholar 

  18. Cutrone A, Sergi P, Bossi S, Micera S (2011) Modelization of a self opening peripheral neural interface, a feasibility study. Elsevier Med Eng Phys 33(10):1254–1261

    Article  Google Scholar 

  19. Borton B, Bonizzato M, Beauparlant J, DiGiovanna J, Moraud E, Wenger N, Musienko P, Minev I, Lacour S, Millan J, Micera S, Courtine G (2014) Corticospinal neuroprostheses to restore locomotion after spinal cord injury. Neurosci Res 78:21–29

    Article  PubMed  Google Scholar 

  20. Damon H, Barth X, Roman S, Mion F (2013) Sacral nerve stimulation for fecal incontinence improves symptoms, quality of life and patients’ satisfaction: results of a monocentric series of 119 patients. Springer Int J Colorectal Dis 28(2):227–233

    Article  Google Scholar 

  21. Davidovics N, Fridman G, Santina C (2012) Co-modulation of stimulus rate and current from elevated baselines expands head motion encoding range of the vestibular prosthesis. Exp Brain Res 218(3):389–400

    Article  PubMed  Google Scholar 

  22. Dirks M, Wall B, Snijders T, Ottenbros C, Verdijk L, Loon L (2014) Neuromuscular electrical stimulation prevents muscle disuse atrophy during leg immobilization in humans. Acta Phys 210(3):628–641

    Article  CAS  Google Scholar 

  23. Djourno A, Eyries C (1957) Auditory prosthesis by means of a distant electrical stimulation of the sensory nerve with the use of an indwelt coiling. La Presse Mdicale (in French) 65(63):1417

    CAS  Google Scholar 

  24. Ethier C, Oby E, Bauman M, Miller L (2012) Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485:368–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Famm K (2013) A jump-start for electroceuticals. Nature 496:159–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Finnerup N, Gyldensted C, Frederiksen A, Bach F, Jensen T (2004) Sensory perception in complete spinal cord injury. Acta Neurol Scand 109(3):194–199

    Article  CAS  PubMed  Google Scholar 

  27. Fisher L, Tyler D, Anderson J, Triolo R (2009) Chronic stability and selectivity of four-contact spiral nerve-cuff electrodes in stimulating the human femoral nerve. J Neural Eng 6(046010):1–9

    Google Scholar 

  28. Fisher L, Tyler D, Triolo R (2013) Optimization of selective stimulation parameters for multi-contact electrodes. J NeuroEng Rehabil 10(25):1–8

    Google Scholar 

  29. Fitzsimmons NA, Drake W, Hanson TL, Lebedev MA, Nicolelis MAL (2007) Primate reaching cued by multichannel spatiotemporal cortical microstimulation. J Neurosci 27(21):5593–5602

    Article  CAS  PubMed  Google Scholar 

  30. Fritsch G (1870) Electric excitability of the cerebrum (uber die elektrische erregbarkeit des grosshirns). Arch Anat Physiol Wiss Med (in German) 37:300–332

    Google Scholar 

  31. Fuentes R, Petersson P, Siesser W, Caron M, Nicolelis M (2009) Spinal cord stimulation restores locomotion in animal models of parkinsons disease. Science 323:1578–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Galvani L (1797) Memorie sulla elettricit animale. Bologna Per le stampe del Sassi 7:363–418

    Google Scholar 

  33. Garcia S, Petrini K, Rubin G, Cruz L, Nardini M (2015) Visual and non-visual navigation in blind patients with a retinal prosthesis. PLOS One 10(1371):1–12

    Google Scholar 

  34. Gerasimenkoa Y, Gorodnichevb R, Moshonkinaa T, Sayenkoc D, Gadc P, Edgerton V (2015) Transcutaneous electrical spinal-cord stimulation in humans. Annal Phys Rehabil Med 58:1–7

    Article  Google Scholar 

  35. Greenwald E, Masters MR, Thakor NV (2016) Implantable neurotechnologies: bidirectional neural interfaces—applications and VLSI circuit implementations. Med Biol Eng Comput 54(1). doi:10.1007/s11517-015-1429-x

  36. Guggenmos D, Nudo R (2014) Clinical systems neuroscience. Springer, New York

    Google Scholar 

  37. Guo H, Zhang H, Kuang Y, Wang C, Jing X, Gu J, Gao G (2014) Electrical stimulation of the substantia nigra pars reticulata (SNr) suppresses chemically induced neocortical seizures in rats. J Mol Neurosci 53:546–552

    Article  CAS  PubMed  Google Scholar 

  38. Guyton AC, Hall JE (2006) Textbook of medical physiology, 11th edn. Elsevier Saunders, Philadelphia

    Google Scholar 

  39. Herman P (2014) Computational models of modulation of oscillatory dynamics. Springer Encycl Comput Neurosci 194:1–8

    Article  Google Scholar 

  40. Hodgkin A, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation of nerve. J Physiol 117:500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hooijman P, Ottenheijm C (2014) Mitochondrial respiration and passive stretch of the diaphragm during unilateral phrenic nerve stimulation. Crit Care Med 42(9):633–634

    Article  Google Scholar 

  42. Horch K, Meek S, Taylor T, Hutchinson D (2011) Object discrimination with an articial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng 19(5):483–489

    Article  PubMed  Google Scholar 

  43. Howland R (2014) Vagus nerve stimulation. Curr Behav Neurosci Rep 4(2):64–73

    Article  Google Scholar 

  44. Humayun MS (2001) Intraocular retinal prosthesis. Trans Am Ophthalmol Soc 99:271–300

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ijspeert A (2015) From the neuron doctrine to neural networks. Nat Rev Neurosci 16:487–497

    Article  CAS  Google Scholar 

  46. Jahanshahi M (2013) Effects of deep brain stimulation of the subthalamic nucleus on inhibitory and executive control over prepotent responses in parkinsons disease. Front Syst Neurosci 7(118):1–20

    Google Scholar 

  47. Janig W (2006) The Integrative action of the autonomic nervous system-neurobiology of homeostasis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  48. Kaplan H, Baker L, Rubayic S, Loeb G (2011) Preventing ischial pressure ulcers: Iii. clinical pilot study of chronic neuromuscular electrical stimulation. Appl Bionics Biomech 8:345–359

    Article  Google Scholar 

  49. Karaca P, Hadzic A, Yufa M, Vloka JD, Brown AR, Visan A, Sanborn K, Santos AC (2003) Painful paresthesiae are infrequent during brachial plexus localization using low current peripheral nerve stimulation. Reg Anesth Pain Med 28(5):380–383

    Article  PubMed  Google Scholar 

  50. Keith M, Peckham P, Thrope G, Stroh K, Smith B, Buckett J, Kilgore K, Jatich J (1989) Implantable functional neuromuscular stimulation in the tetraplegic hand. J Hand Surg 14A(3):524–530

    Article  Google Scholar 

  51. Kelly S, Shire D, Chen J, Doyle P, Gingerich M, Cogan S, Drohan W, Behan S, Theogarajan L, Wyatt J, Rizzo J (2011) A hermetic wireless subretinal neurostimulator for vision prostheses. IEEE Trans Biomed Eng 58(11):3197–3205

    Article  PubMed  Google Scholar 

  52. Kern H, Hofer C, Modlin M, Forstner C, Raschka-Hogler D, Mayr W, Stohr H (2002) Denervated muscles in humans: limitations and problems of currently used functional electrical stimulation training protocols. Artif Organs 26(3):216–218

    Article  PubMed  Google Scholar 

  53. Korivi N, Ajmera P (2011) Clip-on micro-cuff electrode for neural stimulation and recording. Sens Actuators B Chem 160(1):1514–1519

    Article  CAS  Google Scholar 

  54. Kundu A, Harreby K, Yoshida K, Boretius T, Stieglitz T, Jensen W (2014) Stimulation selectivity of the thin-film longitudinal intrafascicular electrode (tfLIFE) and the transverse intrafascicular multi-channel electrode (TIME) in the large nerve animal model. IEEE Trans Neural Syst Rehabil Eng 22(3):400–410

    Article  PubMed  Google Scholar 

  55. Kwok R (2013) Once more, with feeling. Nature 497:176–178

    Article  CAS  PubMed  Google Scholar 

  56. Laghi F, Shaikh H (2014) Preventing ventilator induced diaphragmatic dysfunction with phrenic nerve stimulation. Crit Care Med 42(2):492–494

    Article  PubMed  Google Scholar 

  57. Ledbetter N, Ethier C, Oby E, Hiatt S, Wilder A, Ko J, Agnew S, Miller L, Clark G (2013) Intrafascicular stimulation of monkey arm nerves evokes coordinated grasp and sensory responses. J Neurophysiol 109:580–590

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lee HM, Ghovanloo M (2013) A high frequency active voltage doubler in standard CMOS using offset-controlled comparators for inductive power transmission. IEEE Trans Biomed Circuits Syst 7(3):213–224

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liberson WT, Holmquest HJ, Scot D, Dow M (1961) Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil 42:101–105

    CAS  PubMed  Google Scholar 

  60. Liu W, Humayun MS (2004) Retinal prosthesis. In: Proceedings of the IEEE international solid state circuits conference, San Francisco, USA, pp 1–9

  61. Liu X, Demosthenous A, Donaldson N (2008) An integrated implantable stimulator that is fail-safe without off-chip blocking-capacitors. IEEE Trans Biomed Circuits Syst 2(3):231–244

    Article  Google Scholar 

  62. Lo Y, Chen K, Gad P, Liu W (2013) A fully-integrated high-compliance voltage soc for epi-retinal and neural prostheses. IEEE Trans Biomed Circuits Syst 7(6):761–772

    Article  PubMed  Google Scholar 

  63. Loeb GE, Peck R, Moore W, Hood K (2001) BION system for distributed neural prosthetic interfaces. Med Eng Phys 23:9–18

    Article  CAS  PubMed  Google Scholar 

  64. Loeb GE, Richmond F, Baker L (2006) The bion devices: injectable interfaces with peripheral nerves and muscles. Neurosurg Focus 20(5):1–9

    Article  Google Scholar 

  65. London B, Jordan L, Jackson C, Miller L (2008) Electrical stimulation of the proprioceptive cortex (area 3a) used to instruct a behaving monkey. IEEE Trans Neural Syst Rehabil Eng 16(1):32–36

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lozano F, Bernal D, Cervantes S, Ros-Roca MA, Alguero M, Atucha N, Garcia A, Moraleda J, Cenis J (2014) Effects of composite films of silk fibroin and graphene oxide on the proliferation, cell viability and mesenchymal phenotype of periodontal ligament stem cells. J Mater Sci Mater Med 25(12):2731–2741

    Article  CAS  Google Scholar 

  67. Maschio M, Ghezzi D, Bony G, Alabastri A, Deidda G, Brondi M, Sato S, Zaccaria R, Fabrizio E, Ratto G, Cancedda L (2012) High-performance and site-directed in utero electroporation by a triple-electrode probe. Nat Commun 3:1–11

    Google Scholar 

  68. McCreery DB, Agnew WF, Yuen TG, Bullara L (1990) Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng 37(10):996–1001

    Article  CAS  PubMed  Google Scholar 

  69. McIntyre C, Mori S, Sherman D, Thakor N, Vitek J (2004) Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 115:589–595

    Article  PubMed  Google Scholar 

  70. Medina L, Lebedev M, ODoherty J, Nicolelis M (2012) Stochastic facilitation of artificial tactile sensation in primates. J Neurosci 32(41):14271–14275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mortimer JT, Bhadra N (2004) Neuroprosthetics: theory and practice. Chapter 4.2. Peripheral nerve and muscle stimulation. World Scientific Publishing Co., New Jersey

    Google Scholar 

  72. Mulcahey M, Betz R, Kozin S, Smith B, Hutchinson D, Lutz C (2004) Implantation of the freehand systems during initial rehabilitation using minimally invasive techniques. Spinal Cord 42:146–155

    Article  CAS  PubMed  Google Scholar 

  73. Mushahwar V, Jacobs P, Normann R, Triolo R, Kleitman N (2007) New functional electrical stimulation approaches to standing and walking. J Neural Eng 4:S181–S197

    Article  PubMed  Google Scholar 

  74. Nag S, Jia X, Thakor NV, Sharma D (2013) Flexible charge balanced stimulator with 5.6 fC accuracy for 140 nC injections. IEEE Trans Biomed Circuits Syst 7(3):3734–3742

    Article  Google Scholar 

  75. Nag S, Ng K, Jagadeesan R, Sheshadri S, Martinez I, Bossi S, Yen S, Thakor N (2014) Neural prosthesis for motor function restoration in upper limb extremity. In: Proceedings of the 10th IEEE biomedical circuits and systems conference, Lausanne, Switzerland, pp 388–391

  76. Nag S, Sharma D, Thakor NV (2014) Ultra-low power electrical stimulator for electrode interfaces. In: Proceedings of the 10th IEEE biomedical circuits and systems conference, Lausanne, Switzerland, pp 488–491

  77. Nag S, Sikdar SK, Thakor N, Rao V, Sharma D (2015) Sensing of stimulus artifact suppressed signals from electrode interfaces. IEEE Sens J 15(7):1–6

    Article  Google Scholar 

  78. Naples G, Mortimer J, Scheiner A, Sweeney JD (1988) A spiral nerve cuff electrode for peripheral nerve stimulation. IEEE Trans Biomed Eng 35(11):1988

    Article  Google Scholar 

  79. Navarro X, Krueger T, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerve Syst 10:229–258

    Article  Google Scholar 

  80. Nazarpour K, Ethier C, Paninski L, Rebesco J, Miall R, Miller L (2012) Emg prediction from motor cortical recordings via a nonnegative point-process filter. IEEE Trans Biomed Eng 59(7):1829

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ng KA, Greenwald E, Xu YP, Thakor NV (2016) Implantable Neurotechnologies: a review of integrated circuit neural amplifiers. Med Biol Eng Comput 54(1). doi:10.1007/s11517-015-1431-3

  82. Nightingale E, Raymond J, Middleton J, Crosbie J, Davis G (2007) Benets of fes gait in a spinal cord injured population. Spinal Cord 45:646–657

    Article  CAS  PubMed  Google Scholar 

  83. Palanker D, Vankov A, Huie P, Baccus S (2005) Design of a high-resolution optoelectronic retinal prosthesis. J Neural Eng 2:S105–S120

    Article  PubMed  Google Scholar 

  84. Patil AC, Thakor NV (2016) Implantable Neurotechnologies: a review of micro and nano-electrodes for neural recording. Med Biol Eng Comput 54(1). doi:10.1007/s11517-015-1430-4

  85. Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  86. Rader T, Fastl H, Baumann U (2013) Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field. Ear Hear 34(3):324–332

    Article  PubMed  Google Scholar 

  87. Ragnarsson K (2008) Functional electrical stimulation after spinal cord injury: current use, therapeutic effects and future directions. Spinal Cord 46(4):255–274

    Article  CAS  PubMed  Google Scholar 

  88. RamRakhyani AK, Mirabbasi S, Chiao M (2011) Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans Biomed Circuits Syst 5(1):48–63

    Article  CAS  PubMed  Google Scholar 

  89. Raspopovic S, Capogrosso M, Petrini F, Bonizzato M, Rigosa J, Pino G, Carpaneto J, Controzzi M, Boretius T, Cipriani C, Carrozza M, Jensen W, Guglielmelli E, Stieglitz T, Rossini P, Micera S (2014) Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Transl Med 6(222ra19):1–10

    Google Scholar 

  90. Rizzo JF (2003) Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Investig Ophthalmol 44(12):5355–5361

    Article  Google Scholar 

  91. Rodriguez F, Ceballos D, Schuttler M, Valero A, Valderrama E, Stieglitz T, Navarro X (2000) Polyimide cuff electrodes for peripheral nerve stimulation. J Neurosci Methods 98:105–118

    Article  CAS  PubMed  Google Scholar 

  92. Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber S, Israel Z, Vaadia E, Bergman H (2011) Closed loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72(2):370–384

    Article  CAS  PubMed  Google Scholar 

  93. Roy A, Gourcerol G, Menard J, Michot F, Leroi AM, Bridoux V (2014) Predictive factors for successful sacral nerve stimulation in the treatment of fecal incontinence: lessons from a comprehensive treatment assessment. Dis Colon Rectum 57(6):772–780

    Article  PubMed  Google Scholar 

  94. Salinas E, Romo R (1998) Neuronal representations in a categorization task-sensory to motor transformation. In: Bower JM (ed) Computational neuroscience. Plenum Press, New York, p 599–604

  95. Schiefer M, Freeberg M, Pinault G, Anderson J, Hoyen H, Tyler D, Triolo R (2013) Selective activation of the human tibial and common peroneal nerves with a flat interface nerve electrode. J Neural Eng 10(056006):1–13

    Google Scholar 

  96. Schiefer M, Polasek K, Triolo R, Pinault G, Tyler D (2010) Selective stimulation of the human femoral nerve with a flat interface nerve electrode. J Neural Eng 7:1–9

    Article  Google Scholar 

  97. Schiefer M, Polasek K, Triolo R, Pinault G, Tyler D (2013) Selective stimulation of the human femoral nerve with a flat interface nerve electrode. J Neural Eng 7(026006):1–9

    Google Scholar 

  98. Shire DB, Kelly SK, Chen J, Doyle P, Gingerich MD, Cogan SF, Drohan WA, Mendoza O, Theogarajan L, Wyatt JL, Rizzo JF (2009) Development and implantation of a minimally invasive wireless subretinal neurostimulator. IEEE Trans Biomed Eng 56(10):2502–2511

    Article  PubMed  Google Scholar 

  99. Sit JJ, Simonson AM, Oxenham AJ, Faltys MA, Sarpeshkar R (2007) A low-power asynchronous interleaved sampling algorithm for cochlear implants that encodes envelope and phase information. IEEE Trans Biomed Eng 54(1):138–149

    Article  PubMed  Google Scholar 

  100. Skarzynski H, Lorens A, Piotrowska I, Anderson I (2006) Partial deafness cochlear implantation provides benefit to a new population of individuals with hearing loss. Acta Oto-Laryngol 126(9):1–7

    Article  Google Scholar 

  101. Tehovnik E, Slocum W, Smirnakis S, Tolias A (2009) Microstimulation of visual cortex to restore vision. Prog Brain Res 175:347–375

    Article  PubMed  Google Scholar 

  102. Tehovnik E, Tolias A, Sultan F, Slocum W, Logothetis N (2006) Direct and indirect activation of cortical neurons by electrical microstimulation. J Neurophysiol 96:512–521

    Article  CAS  PubMed  Google Scholar 

  103. Temel Y, Vanderwalle VV, Wolf MVD, Spincemaille GH, Desbonnet L, Hoogland G, Steinbusch HWM (2004) Monopolar versus bipolar high frequency stimulation in the rat subthalamic nucleus: differences in histological damage. Neurosci Lett 367(1):92–96

    Article  CAS  PubMed  Google Scholar 

  104. Terry R (2014) Epilepsy topics. Chapter: Vagus nerve stimulation therapy for epilepsy. Intech, Croatia

    Google Scholar 

  105. Tran N, Bai S, Yang J, Chun H, Kavehei O, Yang Y, Muktamath V, Ng D, Meffin H, Halpern M, Skafidas E (2014) A complete 256-electrode retinal prosthesis chip. IEEE J Solid State Circuits 49(3):751–765

    Article  Google Scholar 

  106. Vieira M, Lebedev M, Kunicki C, Wang J, Nicolelis M (2013) A brain-to-brain interface for real-time sharing of sensorimotor information. Nat Sci Rep 3(1319):1–10

    Google Scholar 

  107. Wang G, Liu W, Sivaprakasam M, Zhou M, Weiland JD, Humayun MS (2006) A dual band wireless power and data telemetry for retinal prosthesis. In: Proceedings of the 28th annual international conference of the IEEE engineering in medicine and biology society, pp 4392–4395

  108. Webster JG (2009) Medical instrumentation. Wiley, Hoboken

    Google Scholar 

  109. Weiland J, Humayun M (2014) Retinal prosthesis. IEEE Trans Biomed Eng 61(5):1412–1424

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wenger N, Moraud E, Raspopovic S, Bonizzato M, DiGiovanna J, Musienko P, Morari M, Micera S, Courtine G (2014) Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Sci Transl Med 6(255):255-ra133

    Article  CAS  Google Scholar 

  111. Weslay RJ (1871) The desideratum; or, electricity made plain and useful. Bailliere, Tindall, and Cox, London

    Google Scholar 

  112. Wheeledon I (2014) Tissue and organ regeneration: advances in micro and nanotechnology. CRC Press, Boca Raton

    Google Scholar 

  113. Williams D (2014) There is no such thing as a biocompatible material. Biomaterials 35(38):10009–10014

    Article  CAS  PubMed  Google Scholar 

  114. Wodlinger B, Rashid S, Durand D (2013) Block of peripheral pain response by high-frequency sinusoidal stimulation. Neuromodulation 16:312–317

    Article  PubMed  Google Scholar 

  115. Xu J, Shepherd RK, Millard RE, Clark GM (1997) Chronic electrical stimulation of the auditory nerve at high stimulus rates: a physiological and histopathological study. Elsevier Hear Res 105(1–2):1–29

    Article  CAS  Google Scholar 

  116. Zewdie E, Roy F, Yang J, Gorassini M (2015) Facilitation of descending excitatory and spinal inhibitory networks from training of endurance and precision walking in participants with incomplete spinal cord injury. In: Dancause N, Nadeau S, Rossignol S (eds) Sensorimotor rehabilitation at the crossroads of basic and clinical sciences. Progress in brain research, vol 218. Elsevier, Amsterdam, pp 127–155

  117. Zhu Z, Tang Q, Zeng F, Guan T, Ye D (2012) Cochlear-implant spatial selectivity with monopolar, bipolar and tripolar stimulation. Hear Res 283(1–2):45–58

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zrenner E (2013) Fighting blindness with microelectronics. Sci Transl Med 5(210):1–7

    Article  Google Scholar 

  119. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel V, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc R Soc B 278:1489–1497

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zoll PM (1952) Resuscitation of the heart in ventricular standstill by external electric stimulation. N Engl J Med 247:768–771

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the National University of Singapore, Singapore (NUS-SINAPSE), and the National Research Foundation, Singapore (NRF-CRP10-2012-01). for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Nag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nag, S., Thakor, N.V. Implantable neurotechnologies: electrical stimulation and applications. Med Biol Eng Comput 54, 63–76 (2016). https://doi.org/10.1007/s11517-015-1442-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1442-0

Keywords

Navigation