Medical & Biological Engineering & Computing

, Volume 54, Issue 1, pp 45–62 | Cite as

Implantable neurotechnologies: a review of integrated circuit neural amplifiers

  • Kian Ann Ng
  • Elliot Greenwald
  • Yong Ping Xu
  • Nitish V. Thakor
Review Article


Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification.


Neural recording amplifier Central nervous system Peripheral nervous system VLSI Integrated circuits 



Analog-to-digital converter


Amplitude shift keying


Central nervous system


Complementary metal oxide semiconductor


Common mode rejection ratio


Field effect transistor


Frequency shift keying


Integrated circuit (chip)


Institute of Electrical and Electronic Engineers


Metal oxide semiconductor


Noise efficiency factor


Operational transconductance amplifier


Operational amplifier


Power efficiency factor


Peripheral nervous system


Radio frequency


Ultra wide band radio


Very large scale integration



This work was supported by the National Research Foundation (NRF) of Singapore (Project: NRF CRP 10201201).

Compliance with ethical standards

Conflict of interests

None of the authors have conflict of interests.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable as it is a review article.


  1. 1.
    Abdelhalim K, Jafari HM, Kokarovtseva L, Velazquez JLP, Genov R, Luis J, Velazquez P, Genov R (2013) 64-Channel UWB wireless neural vector analyzer soc with a closed-loop phase synchrony-triggered neurostimulator. IEEE J Solid-State Circuits 48(10):2494–2510CrossRefGoogle Scholar
  2. 2.
    Al-ashmouny KM, Chang S, Yoon E (2012) A 4 µW/Ch analog front-end module with moderate inversion and power-scalable sampling operation for 3-D neural microsystems. IEEE Trans Biomed Circuits Syst 6(5):403–413PubMedCrossRefGoogle Scholar
  3. 3.
    ANSI/ESD S5.3.1-2009 (2009) Electrostatic discharge sensitivity testing—charged device model (CDM)—component level. In: Electrostatic Discharge AssociationGoogle Scholar
  4. 4.
    ANSI/ESDA/JEDEC JS-001-2012 (2012) ESDA/JEDEC joint standard for electrostatic discharge sensitivity testing—human body model (HBM)—component level. Electrostatic Discharge AssociationGoogle Scholar
  5. 5.
    Awan NR, Lozano A, Hamani C (2009) Deep brain stimulation: current and future perspectives. Neurosurg Focus 27:E2PubMedCrossRefGoogle Scholar
  6. 6.
    Aziz JNY, Abdelhalim K, Shulyzki R, Genov R, Bardakjian BL, Derchansky M, Serletis D, Carlen PL (2009) 256-Channel neural recording and delta compression microsystem with 3D electrodes. IEEE J Solid State Circuits 44(3):995–1005CrossRefGoogle Scholar
  7. 7.
    Berge HKO, Hafliger P (2008) A gate leakage feedback element in an adaptive amplifier application. IEEE Trans Circuits Syst II 55(2):101–105CrossRefGoogle Scholar
  8. 8.
    Bergey GK, Morrell MJ, Mizrahi EM, Goldman A, King-Stephens D, Nair D, Srinivasan S, Jobst B, Gross RE, Shields DC, Barkley G, Salanova V, Olejniczak P, Cole A, Cash SS, Noe K, Wharen R, Worrell G, Murro AM, Edwards J, Duchowny M, Spencer D, Smith M, Geller E, Gwinn R, Skidmore C, Eisenschenk S, Berg M, Heck C, Van Ness P, Fountain N, Rutecki P, Massey A, O’Donovan C, Labar D, Duckrow RB, Hirsch LJ, Courtney T, Sun FT, Seale CG (2015) Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology 84(8):810–817PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Beuter A, Lefaucheur JP, Modolo J (2014) Closed-loop cortical neuromodulation in Parkinson’s disease: an alternative to deep brain stimulation? Clin Neurophysiol 125(5):874–885PubMedCrossRefGoogle Scholar
  10. 10.
    “Blackrock microsystems.” [Online]. Available:
  11. 11.
    Bock DC, Marschilok AC, Takeuchi KJ, Takeuchi ES (2012) Batteries used to power implantable biomedical devices. Electrochim Acta 84:155–164CrossRefGoogle Scholar
  12. 12.
    Borton DA, Yin M, Aceros J, Nurmikko A (2013) An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. J Neural Eng 10(2):026010PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Bowman KA, Duvall SG, Meindl JD (2002) Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration. IEEE J Solid-State Circuits 37(2):183–190CrossRefGoogle Scholar
  14. 14.
    Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7(5):446–451PubMedCrossRefGoogle Scholar
  15. 15.
    Carron R, Chaillet A, Filipchuk A, Pasillas-Lépine W, Hammond C (2013) Closing the loop of deep brain stimulation. Front Syst Neurosci 7(2):112PubMedPubMedCentralGoogle Scholar
  16. 16.
    Chae M, Yang Z, Yuce M, Hoang L, Liu W (2009) A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans Neural Syst Rehabil Eng 17(4):312–321PubMedCrossRefGoogle Scholar
  17. 17.
    Chaturvedi V, Amrutur B (2011) An area-efficient noise-adaptive neural amplifier in 130 cmos technology. IEEE J Emerg Sel Top Circuits Syst 1(4):536–545CrossRefGoogle Scholar
  18. 18.
    Chen Y, Basu A, Liu L, Zou X, Rajkumar R, Dawe GS, Je M (2014) A digitally assisted, signal folding neural recording amplifier. IEEE Trans Biomed Circuits Syst 8(4):528–542PubMedCrossRefGoogle Scholar
  19. 19.
    Chen W, Chiueh H, Chen T, Ho C, Jeng C, Ker M, Lin C, Huang Y, Chou C, Fan T, Cheng M, Hsin Y, Liang S, Wang Y, Shaw F, Huang Y, Yang C, Wu C (2014) A fully integrated 8-channel closed-loop neural-prosthetic CMOS SoC for real-time epileptic seizure control. IEEE J Solid-State Circuits 49(1):232–247CrossRefGoogle Scholar
  20. 20.
    Chestek CA, Gilja V, Nuyujukian P, Kier RJ, Solzbacher F, Ryu SI, Harrison RR, Shenoy KV (2009) HermesC: low-power wireless neural recording system for freely moving primates. IEEE Trans Neural Syst Rehabil Eng 17(4):330–338PubMedCrossRefGoogle Scholar
  21. 21.
    Chew K, Yeo K, Chu S (2004) Impact of technology scaling on the 1/f noise of thin and thick gate oxide deep submicron NMOS transistors. IEE Proc Circuits Devices Syst 151(5):415–421CrossRefGoogle Scholar
  22. 22.
    Chew DJ, Zhu L, Delivopoulos E, Minev IR, Musick KM, Mosse CA, Craggs M, Donaldson N, Lacour SP, McMahon SB, Fawcett JW (2013) A microchannel neuroprosthesis for bladder control after spinal cord Injury in rat. Sci Transl Med 5(210):210ra155PubMedCrossRefGoogle Scholar
  23. 23.
    Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI, Shenoy KV (2012) Neural population dynamics during reaching. Nature 487(7405):51–56PubMedPubMedCentralGoogle Scholar
  24. 24.
    Coffey RJ (2009) Deep brain stimulation devices: a brief technical history and review. Artif Organs 33(3):208–220PubMedCrossRefGoogle Scholar
  25. 25.
    Cogan SF (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10:275–309PubMedCrossRefGoogle Scholar
  26. 26.
    Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJC, Velliste M, Boninger ML, Schwartz AB (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381:557–564PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Constantinople CM, Bruno RM (2011) Effects and mechanisms of wakefulness on local cortical networks. Neuron 69(6):1061–1068PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Delivopoulos E, Chew DJ, Minev IR, Fawcett JW, Lacour SP (2012) Concurrent recordings of bladder afferents from multiple nerves using a microfabricated PDMS microchannel electrode array. Lab Chip 12(14):2540PubMedCrossRefGoogle Scholar
  29. 29.
    Demosthenous A, Taylor J, Triantis IF, Rieger R, Donaldson N (2004) Design of an adaptive interference reduction system for nerve-cuff electrode recording. IEEE Trans Circuits Syst I 51(4)Google Scholar
  30. 30.
    Dhillon GS, Horch KW (2005) Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng 13(4):468–472PubMedCrossRefGoogle Scholar
  31. 31.
    Dhillon GS, Lawrence SM, Hutchinson DT, Horch KW (2004) Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J Hand Surg Am 29(4):605–615PubMedCrossRefGoogle Scholar
  32. 32.
    Dorman M, Prisbe M, Meindl J (1985) A monolithic signal processor for a neurophysiological telemetry system. IEEE J Solid State Circuits 20(6):1185–1193CrossRefGoogle Scholar
  33. 33.
    Duvvury C, Amerasekera A (1993) ESD: a pervasive reliability concern for IC technologies. Proc IEEE 81(5):690–702CrossRefGoogle Scholar
  34. 34.
    Eliades SJ, Wang X (2008) Chronic multi-electrode neural recording in free-roaming monkeys. J Neurosci Methods 172(2):201–214PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ethier C, Oby ER, Bauman MJ, Miller LE (2012) Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485(7398):368–371PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Fan D, Rich D, Holtzman T, Ruther P, Dalley JW, Lopez A et al. (2011) A wireless multi-channel recording system for freely behaving mice and rats. PLoS One 6(7):e22033. doi: 10.1371/journal.pone.0022033 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Foster JD, Freifeld O, Nuyujukian P, Ryu SI, Black MJ, Shenoy KV (2011) Combining wireless neural recording and video capture for the analysis of natural gait. In: 2011 5th international IEEE/EMBS conference on neural engineering, pp 613–616Google Scholar
  38. 38.
    Foster JD, Nuyujukian P, Freifeld O, Gao H, Walker R, Ryu SI, Meng TH, Murmann B, Black MJ, Shenoy KV (2014) A freely-moving monkey treadmill model. J Neural Eng 11(4):046020PubMedCrossRefGoogle Scholar
  39. 39.
    Fotowat H, Harrison RR, Krahe R (2013) Statistics of the electrosensory input in the freely swimming weakly electric fish Apteronotus leptorhynchus. J Neurosci 33(34):13758–13772PubMedCrossRefGoogle Scholar
  40. 40.
    Gao H, Walker RM, Nuyujukian P, Makinwa KAA, Shenoy KV, Murmann B, Meng TH (2012) HermesE : a 96-channel full data rate direct neural interface in 0. 13 m CMOS. IEEE J Solid State Circuits 47(4):1043–1055CrossRefGoogle Scholar
  41. 41.
    Gordon T, Hoffer JA, Jhamandas J, Stein RB (1980) Long-term effects of axotomy on neural activity during cat locomotion. J Physiol 303:243–263PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    “Grass Technologies.” [Online]. Available:
  43. 43.
    Gray PR, Hurst PJ, Meyer RG, Lewis SH (2009) Analysis and design of analog integrated circuits. 5th edn. Wiley, USGoogle Scholar
  44. 44.
    Greenwald E, Masters MR, Thakor NV (2016) Implantable neurotechnologies: bidirectional neural interfaces—applications and VLSI circuit implementations. Med Biol Eng Comput 54(1). doi: 10.1007/s11517-015-1429-x
  45. 45.
    Guo L, Clements IP, Li D, Bellamkonda RV, DeWeerth SP (2010) A conformable microelectrode array (cMEA) with integrated electronics for peripheral nerve interfacing. In: IEEE biomedical circuits systems conference, 194–197Google Scholar
  46. 46.
    Guo J, Yuan J, Huang J, Law JKY, Yeung CK, Chan M (2012) 32.9 nV/rt Hz—60.6 dB THD dual-band micro-electrode array signal acquisition IC. IEEE J Solid State Circuits 47(5):1209–1220CrossRefGoogle Scholar
  47. 47.
    Halbach M, Hickethier T, Madershahian N, Reuter H, Brandt MC, Hoppe UC, Müller-Ehmsen J (2015) Acute on/off effects and chronic blood pressure reduction after long-term baroreflex activation therapy in resistant hypertension. J Hypertens 33(8):1697–1703PubMedCrossRefGoogle Scholar
  48. 48.
    Han D, Zheng Y, Rajkumar R, Dawe GS, Je M (2014) A 0.45 V 100-Channel neural-recording IC with sub-uW/channel consumption in 0.18 CMOS. IEEE Trans Biomed Circuits Syst 7(6):735–746Google Scholar
  49. 49.
    Han D, Zheng Y, Rajkumar R, Dawe G, Je M (2014) A 0.45 V 100-channel neural-recording IC with sub-µW/channel consumption in 0.18 µm CMOS. IEEE Trans Biomed Circuits Syst 7(6):735–746Google Scholar
  50. 50.
    Hargreaves B, Hult H, Reda S (2008) Within-die process variations: How accurately can they be statistically modeled? In: 2008 Asia and South Pacific design automation conference, 524–530Google Scholar
  51. 51.
    Harrison RR (2007) A versatile integrated circuit for the acquisition of biopotentials. In: Proceedings of IEEE conference on custom integrated circuits, 115–122Google Scholar
  52. 52.
    Harrison RR (2008) The design of integrated circuits to observe brain activity. Proc IEEE 96(7):1203–1216CrossRefGoogle Scholar
  53. 53.
    Harrison RR, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid State Circuits 38(6):958–965CrossRefGoogle Scholar
  54. 54.
    Harrison R, Watkins P (2007) A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J Solid State Circuits 42(1):123–133CrossRefGoogle Scholar
  55. 55.
    Harrison RR, Fotowat H, Chan R, Kier RJ, Olberg R, Leonardo A, Gabbiani F (2011) Wireless neural/EMG telemetry systems for small freely moving animals. IEEE Trans Biomed Circuits Syst 5(2):103–111PubMedCrossRefGoogle Scholar
  56. 56.
    Hatsopoulos N, Joshi J, O’Leary JG (2004) Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles. J Neurophysiol 92(2):1165–1174PubMedCrossRefGoogle Scholar
  57. 57.
    Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171PubMedCrossRefGoogle Scholar
  58. 58.
    Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372–375PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Homer ML, Nurmikko AV, Donoghue JP, Hochberg LR (2013) Sensors and decoding for intracortical brain computer interfaces. Annu Rev Biomed Eng 15:383–405PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    IEEE C95.1-2005 (2006) IEEE Standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3–300 GHz. In: IEEE Std C95.1-2005 (Revision of IEEE Std C95.1-1991), pp 0_1–238Google Scholar
  61. 61.
    Intan Technologies, “RHD2000 series digital electrophysiology interface chips.” [Online]. Available:
  62. 62.
    Jia X, Koenig MA, Zhang X, Zhang J, Chen T, Chen Z (2007) Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb. J Hand Surg Am 32(5):657–666PubMedCrossRefGoogle Scholar
  63. 63.
    Johnson B, Molnar A (2013) An orthogonal current-reuse amplifier for multi-channel sensing. IEEE J Solid State Circuits 48(6):1487–1496CrossRefGoogle Scholar
  64. 64.
    Jow U-M, McMenamin P, Kiani M, Manns JR, Ghovanloo M (2014) EnerCage: a smart experimental arena with scalable architecture for behavioral experiments. IEEE Trans Biomed Eng 61(1):139–148CrossRefGoogle Scholar
  65. 65.
    Keyes RW (2008) Moore’s law today. IEEE Circuits Syst Mag 8(2):53–54CrossRefGoogle Scholar
  66. 66.
    Lawrence SM, Dhillon GS, Jensen W, Yoshida K, Horch KW (2004) Acute peripheral nerve recording characteristics of polymer-based longitudinal intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng 12(3):345–348PubMedCrossRefGoogle Scholar
  67. 67.
    Lee SB, Lee H-M, Kiani M, Jow U-M, Ghovanloo M (2010) An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. IEEE Trans Biomed Circuits Syst 4(6):360–371PubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lee J, Rhew HG, Kipke DR, Flynn M (2010) A 64 channel programmable closed-loop neurostimulator with 8 channel neural amplifier and logarithmic ADC. IEEE J Solid State Circuits 45(9):1935–1945CrossRefGoogle Scholar
  69. 69.
    Lewyn L, Williams N (2011) Is a new paradigm for nanoscale analog CMOS design needed? Proc IEEE 99(1):3–6CrossRefGoogle Scholar
  70. 70.
    Lewyn LL, Ytterdal T, Wulff C, Martin K (2009) Analog circuit design in nanoscale CMOS technologies. Proc IEEE 97(10):1687–1714CrossRefGoogle Scholar
  71. 71.
    Li L-J, Zhang J, Zhang F, Lineaweaver WC, Chen T-Y, Chen Z-W (2005) Longitudinal intrafascicular electrodes in collection and analysis of sensory signals of the peripheral nerve in a feline model. Microsurgery 25(7):561–565PubMedCrossRefGoogle Scholar
  72. 72.
    Libedinsky C, Livingstone M (2011) Role of prefrontal cortex in conscious visual perception. J Neurosci 31(1):64–69PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Liew W-S, Zou X, Yao L, Lian Y (2009) A 1-V 60-µW 16-channel interface chip for implantable neural recording. In: IEEE custom integrated circuits conference, no. CICC, 507–510Google Scholar
  74. 74.
    Liu L, Zou X, Goh WL, Ramamoorthy R, Dawe G, Je M (2012) 800 nW 43 nV/√Hz neural recording amplifier with enhanced noise efficiency factor. Electron Lett 48(9):479CrossRefGoogle Scholar
  75. 75.
    Loeb GE, Peck RA (1996) Cuff electrodes for chronic stimulation and recording of peripheral nerve activity. J Neurosci Methods 64:95–103PubMedCrossRefGoogle Scholar
  76. 76.
    Loi D, Carboni C, Angius G, Angotzi GN, Barbaro M, Raffo L, Raspopovic S, Navarro X (2011) Peripheral neural activity recording and stimulation system. IEEE Trans Biomed Circuits Syst 5:368–379PubMedCrossRefGoogle Scholar
  77. 77.
    Lopez CM, Andrei A, Mitra S, Welkenhuysen M, Eberle W, Bartic C, Puers R, Yazicioglu RF, Gielen GGE (2014) An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J Solid State Circuits 49(1):248–261CrossRefGoogle Scholar
  78. 78.
    Majidzadeh V, Schmid A, Leblebici Y (2011) Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor. IEEE Trans Biomed Circuits Syst 5(3):262–271PubMedCrossRefGoogle Scholar
  79. 79.
    Malagodi MS, Horch KW, Schoenberg AA (1989) An intrafascicular electrode for recording of action potentials in peripheral nerves. Ann Biomed Eng 17(4):397–410PubMedCrossRefGoogle Scholar
  80. 80.
    Mendez A, Sawan M, Minagawa T, Wyndaele JJ (2013) Estimation of bladder volume from afferent neural activity. IEEE Trans Neural Syst Rehabil Eng 21(5):704–715PubMedCrossRefGoogle Scholar
  81. 81.
    Metting van Rijn AC, Peper A, Grimbergen CA (1990) High-quality recording of bioelectric events. Part 1. Interference reduction, theory and practice. Med Biol Eng Comput 28(5):389–397PubMedCrossRefGoogle Scholar
  82. 82.
    Micera S, Rossini PM, Rigosa J, Citi L, Carpaneto J, Raspopovic S, Tombini M, Cipriani C, Assenza G, Carrozza MC, Hoffmann K-P, Yoshida K, Navarro X, Dario P (2011) Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces. J Neuroeng Rehabil 8:53PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Miocinovic S, Somayajula S, Chitnis S, Vitek JL (2013) History, applications, and mechanisms of deep brain stimulation. JAMA Neurol 70(2):163–171PubMedCrossRefGoogle Scholar
  84. 84.
    Miranda H, Gilja V, Chestek CA, Shenoy KV, Meng TH (2010) HermesD: a high-rate long-range wireless transmission system for simultaneous multichannel neural recording applications. IEEE Trans Biomed Circuits Syst 4(3):181–191PubMedCrossRefGoogle Scholar
  85. 85.
    Morizio J, Irazoqui P, Go V, Parmentier J (2005) Wireless headstage for neural prosthetics. In: IEEE EMBS conference on neural engineering, pp 414–417Google Scholar
  86. 86.
    Muller R, Gambini S, Rabaey JM (2013) A 0.013 mm 2, 5 µW, DC-Coupled neural signal acquisition IC With 0.5 V supply. IEEE J Solid State Circuits 47(1):232–243CrossRefGoogle Scholar
  87. 87.
    “Multichannel Systems.” [Online]. Available:
  88. 88.
    Nag S, Thakor NV (2016) Implantable neurotechnologies: electrical stimulation and applications. Med Biol Eng Comput 54(1). doi: 10.1007/s11517-015-1442-0
  89. 89.
    Najafi K, Wise K (1986) An implantable multielectrode array with on-chip signal processing. IEEE J Solid State Circuits 21(6):1035–1044CrossRefGoogle Scholar
  90. 90.
    “NeuroNexus Technologies.” [Online]. Available:
  91. 91.
    “Neuropace Inc.” [Online]. Available:
  92. 92.
    Ng KA, Xu YP (2013) A compact, low input capacitance neural recording amplifier. IEEE Trans Biomed Circuits Syst 7(5):610–620PubMedCrossRefGoogle Scholar
  93. 93.
    Ng KA, Xu YP (2015) A multi-channel neural-recording amplifier system with 90 dB CMRR employing CMOS-inverter-based OTAs with CMFB through supply rails in 65 nm CMOS. In: ISSCC Dig.Tech. Papers, 206–207Google Scholar
  94. 94.
    Ng KA, Xu L, Li X, Yen S, Je M, Xu YP, Tan TC (2012) An inductively powered CMOS multichannel bionic neural link for peripheral nerve function restoration. In: IEEE asian solid state circuits conference, 181–184Google Scholar
  95. 95.
    Ng KA, Cutrone A, Bossi S, Nag S, Delgado-Martinez I, Sheshadri S, Poulard CA, Xu YP, Yen S-C, and Thakor NV (2015) An intrafascicular electrode with integrated amplifiers for peripheral nerve recording. In IEEE/EMBS conference on neural engineering (NER), 394–397Google Scholar
  96. 96.
    Olofsson PS, Levine YA, Caravaca A, Chavan SS, Pavlov VA, Faltys M, Tracey KJ (2015) Single-pulse and unidirectional electrical activation of the cervical vagus nerve reduces tumor necrosis factor in endotoxemia. Bioelectron Med 2:37–42Google Scholar
  97. 97.
    Olsson R, Wise K (2005) A three-dimensional neural recording microsystem with implantable data compression circuitry. IEEE J Solid State Circuits 40(12):2796–2804CrossRefGoogle Scholar
  98. 98.
    Olsson R, Buhl D, Sirota AM, Buzsáki G, Wise KD (2005) Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. IEEE Trans Bio-Med Eng 52(7):1303–1311CrossRefGoogle Scholar
  99. 99.
    Patil AC, Thakor NV (2016) Implantable neurotechnologies: a review of micro and nano-electrodes for neural recording. Med Biol Eng Comput 54(1). doi: 10.1007/s11517-015-1430-4
  100. 100.
    Perelman Y, Ginosar R (2007) An integrated system for multichannel neuronal recording with spike/LFP separation, integrated A/D conversion and threshold detection. IEEE Trans Biomed Eng 54(1):130–137PubMedCrossRefGoogle Scholar
  101. 101.
    Perlin GE, Sodagar AM, Wise KD (2006) Neural recording front-end designs for fully implantable neuroscience applications and neural prosthetic microsystems. In: Proceedings of international conference on IEEE engineering in medicine biology society, 2982–2985Google Scholar
  102. 102.
    “Plexon”. [Online]. Available:
  103. 103.
    Qian C, Parramon J, Sanchez-Sinencio E (2011) A micropower low-noise neural recording front-end circuit for epileptic seizure detection. IEEE J Solid State Circuits 46(6):1392–1405CrossRefGoogle Scholar
  104. 104.
    Rhew H, Jeong J, Fredenburg J, Dodani S (2014) A fully self-contained logarithmic closed-loop deep brain stimulation SoC with wireless telemetry and wireless power management. IEEE J Solid State Circuits 49(10):2213–2227CrossRefGoogle Scholar
  105. 105.
    Rieger R, Taylor J, Demosthenous A, Donaldson N, Langlois PJ (2003) Design of a low-noise preamplifier for nerve cuff electrode recording. IEEE J Solid State Circuits 38(8):1373–1379CrossRefGoogle Scholar
  106. 106.
    Rieger R, Pal D, Taylor J, Clarke C, Langlois P, Donaldson N (2005) 10-channel very low noise ENG amplifier system using CMOS technology. In IEEE international symposium circuits and systems, vol. 1, 748–751Google Scholar
  107. 107.
    Rieger R, Schuettler M, Pal D, Clarke C, Langlois P, Taylor J, Donaldson N (2006) Very low-noise ENG amplifier system using CMOS technology. IEEE Trans Neural Syst Rehabil Eng 14(4):427–437PubMedCrossRefGoogle Scholar
  108. 108.
    Rodriguez-Perez A, Ruiz-Amaya J, Delgado-Restituto M, Rodriguez-Vazquez A (2012) A low-power programmable neural spike detection channel with embedded calibration and data compression. IEEE Trans Biomed Circuits Syst 6(2):87–100PubMedCrossRefGoogle Scholar
  109. 109.
    Rossini PM, Micera S, Benvenuto A, Carpaneto J, Cavallo G, Citi L, Cipriani C, Denaro L, Denaro V, Di Pino G, Ferreri F, Guglielmelli E, Hoffmann KP, Raspopovic S, Rigosa J, Rossini L, Tombini M, Dario P (2010) Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol 121(5):777–783PubMedCrossRefGoogle Scholar
  110. 110.
    Roy S, Wang X (2012) Wireless multi-channel single unit recording in freely moving and vocalizing primates. J Neurosci Methods 203(1):28–40PubMedCrossRefGoogle Scholar
  111. 111.
    Roy K, Mukhopadhyay S, Mahmoodi-Meimand H (2003) Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc IEEE 91(2):305–327CrossRefGoogle Scholar
  112. 112.
    Rozman J, Zorko B, Bunc M, Mikac U, Tegou E (2002) Recording of ENGs from the nerves innervating the pancreas of a dog during the intravenous glucose tolerance test. Physiol Meas 23(4):695–705PubMedCrossRefGoogle Scholar
  113. 113.
    Ruther P, Holzhammer T, Herwik S, Rich PD, Dalley JW, Paul O, Holtzman T (2011) Compact wireless neural recording system for small animals using silicon-based probe arrays. In: IEEE engineering in medicine and biology conference, 2284–2287Google Scholar
  114. 114.
    Sacristan-Riquelme J, Oses MT (2007) Implantable stimulator and recording device for artificial prosthesis control. Microelectron J 38(12):1135–1149CrossRefGoogle Scholar
  115. 115.
    Sadiku MNO, Akujuobi CM (2004) Electrostatic discharge (ESD). IEEE Potentials 22(5):39–41CrossRefGoogle Scholar
  116. 116.
    Sahin M, Durand DM, Haxhiu MA (2000) Closed-loop stimulation of hypoglossal nerve in a dog model of upper airway obstruction. IEEE Trans Biomed Eng 47(7):919–925PubMedCrossRefGoogle Scholar
  117. 117.
    Sahin NT, Pinker S, Cash SS, Schomer D, Halgren E (2009) Sequential processing of lexical, grammatical, and phonological information within Broca’s area. Science 326:445–449PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Sanchez JC, Carmena JM, Lebedev MA, Nicolelis MAL, Harris JG, Principe JC (2004) Ascertaining the importance of neurons to develop better brain-machine interfaces. IEEE Trans Biomed Eng 51(6):943–953PubMedCrossRefGoogle Scholar
  119. 119.
    Sansen WMC (2006) Analog design essentials. Springer, NetherlandsGoogle Scholar
  120. 120.
    Santhanam G, Linderman MD, Gilja V, Afshar A, Ryu SI, Meng TH, Shenoy KV (2007) HermesB: a continuous neural recording system for freely behaving primates. IEEE Trans Biomed Eng 54(11):2037–2050PubMedCrossRefGoogle Scholar
  121. 121.
    Santos FJ, Costa RM, Tecuapetla F (2011) Stimulation on demand: closing the loop on deep brain stimulation. Neuron 72:197–198PubMedCrossRefGoogle Scholar
  122. 122.
    Sarpeshkar R, Wattanapanitch W, Arfin SK, Rapoport BI, Mandal S, Baker MW, Fee MS, Musallam S, Andersen RA (2008) Low-power circuits for brain-machine interfaces. IEEE Trans Biomed Circuits Syst 2(3):173–183PubMedCrossRefGoogle Scholar
  123. 123.
    Schuettler M, Seetohul V, Rijkhoff NJM, Moeller FV, Donaldson N, Taylor J (2011) Fibre-selective recording from peripheral nerves using a multiple-contact cuff: report on pilot pig experiments. In: IEEE engineering in medicine and biology conference, 3103–3106Google Scholar
  124. 124.
    Schuettler M, Donaldson N, Seetohul V, Taylor J (2013) Fibre-selective recording from the peripheral nerves of frogs using a multi-electrode cuff. J Neural Eng 10(3):036016PubMedCrossRefGoogle Scholar
  125. 125.
    Shahrokhi F, Abdelhalim K, Serletis D, Carlen PL, Genov R (2010) The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Trans Biomed Circuits Syst 4(3):149–161PubMedCrossRefGoogle Scholar
  126. 126.
    Shanechi MM, Hu RC, Williams ZM (2014) A cortical–spinal prosthesis for targeted limb movement in paralysed primate avatars. Nat Commun 5:1–9CrossRefGoogle Scholar
  127. 127.
    Sinjar T, Hinge B, Jorgensen A, Jensen ML, Haugland M (1992) Whole sensory nerve recordings with spiral nerve cuff electrode. In: IEEE engineering in medicine and biology conference, vol. 4, 1330–1331Google Scholar
  128. 128.
    Sodagar AM, Perlin GE, Yao Y, Najafi K, Wise KD (2009) An implantable 64-channel wireless microsystem for single-unit neural recording. IEEE J Solid State Circuits 44(9):2591–2604CrossRefGoogle Scholar
  129. 129.
    Song S, Rooijakkers MJ, Harpe P, Rabotti C, Mischi M, Van Roermund AHM, Cantatore E (2013) A 430nW 64nV/√ Hz current-reuse telescopic amplifier for neural recording applications. In: Biomedical circuits and systems conference (BioCAS), 2013 IEEE, vol. 1, 322–325Google Scholar
  130. 130.
    Stevenson IH, Kording KP (2011) How advances in neural recording affect data analysis. Nat Neurosci 14(2):139–142PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Steyaert MS, Sansen WMC, Chang Z (1987) A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J Solid State Circuits 6:1163–1168CrossRefGoogle Scholar
  132. 132.
    Suo Y, Zhang J, Xiong T, Chin PS, Etienne-Cummings R, Tran TD (2014) Energy-efficient multi-mode compressed sensing system for implantable neural recordings. IEEE Trans Biomed Circuits Syst 8(5):648–659PubMedCrossRefGoogle Scholar
  133. 133.
    Szuts TA, Fadeyev V, Kachiguine S, Sher A, Grivich MV, Agrochão M, Hottowy P, Dabrowski W, Lubenov EV, Siapas AG, Uchida N, Litke AM, Meister M (2011) A wireless multi-channel neural amplifier for freely moving animals. Nat Neurosci 14(2):263–269PubMedCrossRefGoogle Scholar
  134. 134.
    Taylor J, Masanotti D, Seetohul V, Hao S (2006) Some recent developments in the design of biopotential amplifiers for ENG recording systems. In: IEEE Asia Pacific conference on circuits and systems (APCAS)Google Scholar
  135. 135.
    Thomas SJ, Harrison RR, Leonardo A, Reynolds MS (2012) A battery-free multichannel digital neural/EMG telemetry system for flying insects. IEEE Trans Biomed Circuits Syst 6(5):424–436PubMedCrossRefGoogle Scholar
  136. 136.
    “Triangle Biosystems International”. [Online]. Available:
  137. 137.
    “Tucker-Davis Technologies”. [Online]. Available:
  138. 138.
    Upshaw B, Sinkjaer T (1998) Digital signal processing algorithms for the detection of afferent nerve activity recorded from cuff electrodes. IEEE Trans Rehabil Eng 6(2):172–181PubMedCrossRefGoogle Scholar
  139. 139.
    Uranga A, Navarro X, Barniol N (2004) Integrated CMOS amplifier for ENG signal recording. IEEE Trans Biomed Eng 51(12):2188–2194PubMedCrossRefGoogle Scholar
  140. 140.
    von Haartman M, Mikael Ö (2007) 1/f noise performance of advanced Cmos devices. Springer, BerlinCrossRefGoogle Scholar
  141. 141.
    Wattanapanitch W, Sarpeshkar R (2011) A low-power 32-channel digitally programmable neural recording integrated circuit. IEEE Trans Biomed Circuits Syst 5(6):592–602PubMedCrossRefGoogle Scholar
  142. 142.
    Wattanapanitch W, Fee M, Sarpeshkar R (2007) An energy-efficient micropower neural recording amplifier. IEEE Trans Biomed Circuits Syst 1(2):136–147PubMedCrossRefGoogle Scholar
  143. 143.
    Webster JG (ed) (1998) Medical instrumentation: application and design. Wiley, New yorkGoogle Scholar
  144. 144.
    Wise KD, Angell JB, Starr A (1970) An integrated-circuit approach to extracellular microelectrodes. IEEE Trans Bio-med Eng 17(3):238–247CrossRefGoogle Scholar
  145. 145.
    Wise KD, Anderson DJ, Hetke JF, Kipke DR, Najafi K (2004) Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc IEEE 92(1):76–97CrossRefGoogle Scholar
  146. 146.
    Wolf PD (2008) Thermal considerations for the design of an implanted cortical brain—machine interface (BMI). In: Indwelling neural implants, 1st ed. CRC Press, Boca Raton, 63–86Google Scholar
  147. 147.
    Wong B, Mittal A, Cao Y, Starr GW (2005) Nano-CMOS circuit and physical design. Wiley, LondonGoogle Scholar
  148. 148.
    Wong BP, Mittal A, Starr GW, Zach F, Moroz V (2008) Nano-CMOS design for manufacturability: robust circuit and physical design for sub-65 nm technology nodes. Wiley, LondonCrossRefGoogle Scholar
  149. 149.
    Xu YP, Yen SC, Ng KA, Liu X, Tan TC (2012) A bionic neural link for peripheral nerve repair. In: Proceedings of international conference IEEE engineering in medicine and biology society, 1335–1338Google Scholar
  150. 150.
    Yanagisawa T, Hirata M, Saitoh Y, Goto T, Kishima H, Fukuma R, Yokoi H, Kamitani Y, Yoshimine T (2011) Real-time control of a prosthetic hand using human electrocorticography signals. J Neurosurg 114(6):1715–1722PubMedCrossRefGoogle Scholar
  151. 151.
    Yin M, Borton DA, Aceros J, Patterson WR, Nurmikko AV (2013) A 100-channel hermetically sealed implantable device for chronic wireless neurosensing applications. IEEE Trans Biomed Circuits Syst 7(2):115–128PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Yoo H, Hoof C (2011) Biomedical CMOS ICs. In: Biomedical CMOS ICs, 1st edGoogle Scholar
  153. 153.
    Yoshida K, Kurstjens GAM, Hennings K (2009) Experimental validation of the nerve conduction velocity selective recording technique using a multi-contact cuff electrode. Med Eng Phys 31(10):1261–1270PubMedCrossRefGoogle Scholar
  154. 154.
    Zannad F, De Ferrari GM, Tuinenburg AE, Wright D, Brugada J, Butter C, Klein H, Stolen C, Meyer S, Stein KM, Ramuzat A, Schubert B, Daum D, Neuzil P, Botman C, Castel MA, D’Onofrio A, Solomon SD, Wold N, Ruble SB (2015) Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur Heart J 36(7):425–433PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Zhang J, Mitra S, Suo Y, Cheng A, Xiong T, Michon F, Welkenhuysen M, Kloosterman F, Chin PS, Hsiao S (2015) A closed-loop compressive-sensing-based neural recording system. J Neural Eng 12(3):36005CrossRefGoogle Scholar
  156. 156.
    Zou X, Liu L, Cheong JH, Yao L, Li P, Cheng MY, Goh WL, Rajkumar R, Dawe GS, Cheng KW, Je M (2013) A 100-channel 1-mW implantable neural recording IC. IEEE Trans Circuits Syst I 60(10):2584–2596CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2016

Authors and Affiliations

  • Kian Ann Ng
    • 1
    • 2
  • Elliot Greenwald
    • 3
  • Yong Ping Xu
    • 2
  • Nitish V. Thakor
    • 1
    • 2
    • 3
  1. 1.Singapore Institute for Neurotechnology (SINAPSE)National University of SingaporeSingaporeSingapore
  2. 2.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore
  3. 3.Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations