Skip to main content

Advertisement

Log in

Implantable neurotechnologies: a review of integrated circuit neural amplifiers

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ADC:

Analog-to-digital converter

ASK:

Amplitude shift keying

CNS:

Central nervous system

CMOS:

Complementary metal oxide semiconductor

CMRR:

Common mode rejection ratio

FET:

Field effect transistor

FSK:

Frequency shift keying

IC:

Integrated circuit (chip)

IEEE:

Institute of Electrical and Electronic Engineers

MOS:

Metal oxide semiconductor

NEF:

Noise efficiency factor

OTA:

Operational transconductance amplifier

OpAmp:

Operational amplifier

PEF:

Power efficiency factor

PNS:

Peripheral nervous system

RF:

Radio frequency

UWB:

Ultra wide band radio

VLSI:

Very large scale integration

References

  1. Abdelhalim K, Jafari HM, Kokarovtseva L, Velazquez JLP, Genov R, Luis J, Velazquez P, Genov R (2013) 64-Channel UWB wireless neural vector analyzer soc with a closed-loop phase synchrony-triggered neurostimulator. IEEE J Solid-State Circuits 48(10):2494–2510

    Article  Google Scholar 

  2. Al-ashmouny KM, Chang S, Yoon E (2012) A 4 µW/Ch analog front-end module with moderate inversion and power-scalable sampling operation for 3-D neural microsystems. IEEE Trans Biomed Circuits Syst 6(5):403–413

    Article  PubMed  Google Scholar 

  3. ANSI/ESD S5.3.1-2009 (2009) Electrostatic discharge sensitivity testing—charged device model (CDM)—component level. In: Electrostatic Discharge Association

  4. ANSI/ESDA/JEDEC JS-001-2012 (2012) ESDA/JEDEC joint standard for electrostatic discharge sensitivity testing—human body model (HBM)—component level. Electrostatic Discharge Association

  5. Awan NR, Lozano A, Hamani C (2009) Deep brain stimulation: current and future perspectives. Neurosurg Focus 27:E2

    Article  PubMed  Google Scholar 

  6. Aziz JNY, Abdelhalim K, Shulyzki R, Genov R, Bardakjian BL, Derchansky M, Serletis D, Carlen PL (2009) 256-Channel neural recording and delta compression microsystem with 3D electrodes. IEEE J Solid State Circuits 44(3):995–1005

    Article  Google Scholar 

  7. Berge HKO, Hafliger P (2008) A gate leakage feedback element in an adaptive amplifier application. IEEE Trans Circuits Syst II 55(2):101–105

    Article  Google Scholar 

  8. Bergey GK, Morrell MJ, Mizrahi EM, Goldman A, King-Stephens D, Nair D, Srinivasan S, Jobst B, Gross RE, Shields DC, Barkley G, Salanova V, Olejniczak P, Cole A, Cash SS, Noe K, Wharen R, Worrell G, Murro AM, Edwards J, Duchowny M, Spencer D, Smith M, Geller E, Gwinn R, Skidmore C, Eisenschenk S, Berg M, Heck C, Van Ness P, Fountain N, Rutecki P, Massey A, O’Donovan C, Labar D, Duckrow RB, Hirsch LJ, Courtney T, Sun FT, Seale CG (2015) Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology 84(8):810–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beuter A, Lefaucheur JP, Modolo J (2014) Closed-loop cortical neuromodulation in Parkinson’s disease: an alternative to deep brain stimulation? Clin Neurophysiol 125(5):874–885

    Article  PubMed  Google Scholar 

  10. “Blackrock microsystems.” [Online]. Available: http://www.blackrockmicro.com/

  11. Bock DC, Marschilok AC, Takeuchi KJ, Takeuchi ES (2012) Batteries used to power implantable biomedical devices. Electrochim Acta 84:155–164

    Article  CAS  Google Scholar 

  12. Borton DA, Yin M, Aceros J, Nurmikko A (2013) An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. J Neural Eng 10(2):026010

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bowman KA, Duvall SG, Meindl JD (2002) Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration. IEEE J Solid-State Circuits 37(2):183–190

    Article  Google Scholar 

  14. Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7(5):446–451

    Article  PubMed  CAS  Google Scholar 

  15. Carron R, Chaillet A, Filipchuk A, Pasillas-Lépine W, Hammond C (2013) Closing the loop of deep brain stimulation. Front Syst Neurosci 7(2):112

    PubMed  PubMed Central  Google Scholar 

  16. Chae M, Yang Z, Yuce M, Hoang L, Liu W (2009) A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans Neural Syst Rehabil Eng 17(4):312–321

    Article  PubMed  Google Scholar 

  17. Chaturvedi V, Amrutur B (2011) An area-efficient noise-adaptive neural amplifier in 130 cmos technology. IEEE J Emerg Sel Top Circuits Syst 1(4):536–545

    Article  Google Scholar 

  18. Chen Y, Basu A, Liu L, Zou X, Rajkumar R, Dawe GS, Je M (2014) A digitally assisted, signal folding neural recording amplifier. IEEE Trans Biomed Circuits Syst 8(4):528–542

    Article  PubMed  Google Scholar 

  19. Chen W, Chiueh H, Chen T, Ho C, Jeng C, Ker M, Lin C, Huang Y, Chou C, Fan T, Cheng M, Hsin Y, Liang S, Wang Y, Shaw F, Huang Y, Yang C, Wu C (2014) A fully integrated 8-channel closed-loop neural-prosthetic CMOS SoC for real-time epileptic seizure control. IEEE J Solid-State Circuits 49(1):232–247

    Article  CAS  Google Scholar 

  20. Chestek CA, Gilja V, Nuyujukian P, Kier RJ, Solzbacher F, Ryu SI, Harrison RR, Shenoy KV (2009) HermesC: low-power wireless neural recording system for freely moving primates. IEEE Trans Neural Syst Rehabil Eng 17(4):330–338

    Article  PubMed  Google Scholar 

  21. Chew K, Yeo K, Chu S (2004) Impact of technology scaling on the 1/f noise of thin and thick gate oxide deep submicron NMOS transistors. IEE Proc Circuits Devices Syst 151(5):415–421

    Article  Google Scholar 

  22. Chew DJ, Zhu L, Delivopoulos E, Minev IR, Musick KM, Mosse CA, Craggs M, Donaldson N, Lacour SP, McMahon SB, Fawcett JW (2013) A microchannel neuroprosthesis for bladder control after spinal cord Injury in rat. Sci Transl Med 5(210):210ra155

    Article  PubMed  Google Scholar 

  23. Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI, Shenoy KV (2012) Neural population dynamics during reaching. Nature 487(7405):51–56

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Coffey RJ (2009) Deep brain stimulation devices: a brief technical history and review. Artif Organs 33(3):208–220

    Article  PubMed  Google Scholar 

  25. Cogan SF (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10:275–309

    Article  CAS  PubMed  Google Scholar 

  26. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJC, Velliste M, Boninger ML, Schwartz AB (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381:557–564

    Article  PubMed  PubMed Central  Google Scholar 

  27. Constantinople CM, Bruno RM (2011) Effects and mechanisms of wakefulness on local cortical networks. Neuron 69(6):1061–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Delivopoulos E, Chew DJ, Minev IR, Fawcett JW, Lacour SP (2012) Concurrent recordings of bladder afferents from multiple nerves using a microfabricated PDMS microchannel electrode array. Lab Chip 12(14):2540

    Article  CAS  PubMed  Google Scholar 

  29. Demosthenous A, Taylor J, Triantis IF, Rieger R, Donaldson N (2004) Design of an adaptive interference reduction system for nerve-cuff electrode recording. IEEE Trans Circuits Syst I 51(4)

  30. Dhillon GS, Horch KW (2005) Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng 13(4):468–472

    Article  PubMed  Google Scholar 

  31. Dhillon GS, Lawrence SM, Hutchinson DT, Horch KW (2004) Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J Hand Surg Am 29(4):605–615

    Article  PubMed  Google Scholar 

  32. Dorman M, Prisbe M, Meindl J (1985) A monolithic signal processor for a neurophysiological telemetry system. IEEE J Solid State Circuits 20(6):1185–1193

    Article  Google Scholar 

  33. Duvvury C, Amerasekera A (1993) ESD: a pervasive reliability concern for IC technologies. Proc IEEE 81(5):690–702

    Article  Google Scholar 

  34. Eliades SJ, Wang X (2008) Chronic multi-electrode neural recording in free-roaming monkeys. J Neurosci Methods 172(2):201–214

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ethier C, Oby ER, Bauman MJ, Miller LE (2012) Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485(7398):368–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fan D, Rich D, Holtzman T, Ruther P, Dalley JW, Lopez A et al. (2011) A wireless multi-channel recording system for freely behaving mice and rats. PLoS One 6(7):e22033. doi:10.1371/journal.pone.0022033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Foster JD, Freifeld O, Nuyujukian P, Ryu SI, Black MJ, Shenoy KV (2011) Combining wireless neural recording and video capture for the analysis of natural gait. In: 2011 5th international IEEE/EMBS conference on neural engineering, pp 613–616

  38. Foster JD, Nuyujukian P, Freifeld O, Gao H, Walker R, Ryu SI, Meng TH, Murmann B, Black MJ, Shenoy KV (2014) A freely-moving monkey treadmill model. J Neural Eng 11(4):046020

    Article  PubMed  Google Scholar 

  39. Fotowat H, Harrison RR, Krahe R (2013) Statistics of the electrosensory input in the freely swimming weakly electric fish Apteronotus leptorhynchus. J Neurosci 33(34):13758–13772

    Article  CAS  PubMed  Google Scholar 

  40. Gao H, Walker RM, Nuyujukian P, Makinwa KAA, Shenoy KV, Murmann B, Meng TH (2012) HermesE : a 96-channel full data rate direct neural interface in 0. 13 m CMOS. IEEE J Solid State Circuits 47(4):1043–1055

    Article  Google Scholar 

  41. Gordon T, Hoffer JA, Jhamandas J, Stein RB (1980) Long-term effects of axotomy on neural activity during cat locomotion. J Physiol 303:243–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. “Grass Technologies.” [Online]. Available: http://www.grasstechnologies.com/index.html

  43. Gray PR, Hurst PJ, Meyer RG, Lewis SH (2009) Analysis and design of analog integrated circuits. 5th edn. Wiley, US

  44. Greenwald E, Masters MR, Thakor NV (2016) Implantable neurotechnologies: bidirectional neural interfaces—applications and VLSI circuit implementations. Med Biol Eng Comput 54(1). doi:10.1007/s11517-015-1429-x

  45. Guo L, Clements IP, Li D, Bellamkonda RV, DeWeerth SP (2010) A conformable microelectrode array (cMEA) with integrated electronics for peripheral nerve interfacing. In: IEEE biomedical circuits systems conference, 194–197

  46. Guo J, Yuan J, Huang J, Law JKY, Yeung CK, Chan M (2012) 32.9 nV/rt Hz—60.6 dB THD dual-band micro-electrode array signal acquisition IC. IEEE J Solid State Circuits 47(5):1209–1220

    Article  Google Scholar 

  47. Halbach M, Hickethier T, Madershahian N, Reuter H, Brandt MC, Hoppe UC, Müller-Ehmsen J (2015) Acute on/off effects and chronic blood pressure reduction after long-term baroreflex activation therapy in resistant hypertension. J Hypertens 33(8):1697–1703

    Article  CAS  PubMed  Google Scholar 

  48. Han D, Zheng Y, Rajkumar R, Dawe GS, Je M (2014) A 0.45 V 100-Channel neural-recording IC with sub-uW/channel consumption in 0.18 CMOS. IEEE Trans Biomed Circuits Syst 7(6):735–746

    Google Scholar 

  49. Han D, Zheng Y, Rajkumar R, Dawe G, Je M (2014) A 0.45 V 100-channel neural-recording IC with sub-µW/channel consumption in 0.18 µm CMOS. IEEE Trans Biomed Circuits Syst 7(6):735–746

    Google Scholar 

  50. Hargreaves B, Hult H, Reda S (2008) Within-die process variations: How accurately can they be statistically modeled? In: 2008 Asia and South Pacific design automation conference, 524–530

  51. Harrison RR (2007) A versatile integrated circuit for the acquisition of biopotentials. In: Proceedings of IEEE conference on custom integrated circuits, 115–122

  52. Harrison RR (2008) The design of integrated circuits to observe brain activity. Proc IEEE 96(7):1203–1216

    Article  Google Scholar 

  53. Harrison RR, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid State Circuits 38(6):958–965

    Article  Google Scholar 

  54. Harrison R, Watkins P (2007) A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J Solid State Circuits 42(1):123–133

    Article  Google Scholar 

  55. Harrison RR, Fotowat H, Chan R, Kier RJ, Olberg R, Leonardo A, Gabbiani F (2011) Wireless neural/EMG telemetry systems for small freely moving animals. IEEE Trans Biomed Circuits Syst 5(2):103–111

    Article  CAS  PubMed  Google Scholar 

  56. Hatsopoulos N, Joshi J, O’Leary JG (2004) Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles. J Neurophysiol 92(2):1165–1174

    Article  PubMed  Google Scholar 

  57. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171

    Article  CAS  PubMed  Google Scholar 

  58. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Homer ML, Nurmikko AV, Donoghue JP, Hochberg LR (2013) Sensors and decoding for intracortical brain computer interfaces. Annu Rev Biomed Eng 15:383–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. IEEE C95.1-2005 (2006) IEEE Standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3–300 GHz. In: IEEE Std C95.1-2005 (Revision of IEEE Std C95.1-1991), pp 0_1–238

  61. Intan Technologies, “RHD2000 series digital electrophysiology interface chips.” [Online]. Available: http://www.intantech.com/products_RHD2000.html

  62. Jia X, Koenig MA, Zhang X, Zhang J, Chen T, Chen Z (2007) Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb. J Hand Surg Am 32(5):657–666

    Article  PubMed  Google Scholar 

  63. Johnson B, Molnar A (2013) An orthogonal current-reuse amplifier for multi-channel sensing. IEEE J Solid State Circuits 48(6):1487–1496

    Article  Google Scholar 

  64. Jow U-M, McMenamin P, Kiani M, Manns JR, Ghovanloo M (2014) EnerCage: a smart experimental arena with scalable architecture for behavioral experiments. IEEE Trans Biomed Eng 61(1):139–148

    Article  Google Scholar 

  65. Keyes RW (2008) Moore’s law today. IEEE Circuits Syst Mag 8(2):53–54

    Article  Google Scholar 

  66. Lawrence SM, Dhillon GS, Jensen W, Yoshida K, Horch KW (2004) Acute peripheral nerve recording characteristics of polymer-based longitudinal intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng 12(3):345–348

    Article  PubMed  Google Scholar 

  67. Lee SB, Lee H-M, Kiani M, Jow U-M, Ghovanloo M (2010) An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. IEEE Trans Biomed Circuits Syst 4(6):360–371

    Article  PubMed Central  Google Scholar 

  68. Lee J, Rhew HG, Kipke DR, Flynn M (2010) A 64 channel programmable closed-loop neurostimulator with 8 channel neural amplifier and logarithmic ADC. IEEE J Solid State Circuits 45(9):1935–1945

    Article  Google Scholar 

  69. Lewyn L, Williams N (2011) Is a new paradigm for nanoscale analog CMOS design needed? Proc IEEE 99(1):3–6

    Article  Google Scholar 

  70. Lewyn LL, Ytterdal T, Wulff C, Martin K (2009) Analog circuit design in nanoscale CMOS technologies. Proc IEEE 97(10):1687–1714

    Article  CAS  Google Scholar 

  71. Li L-J, Zhang J, Zhang F, Lineaweaver WC, Chen T-Y, Chen Z-W (2005) Longitudinal intrafascicular electrodes in collection and analysis of sensory signals of the peripheral nerve in a feline model. Microsurgery 25(7):561–565

    Article  PubMed  Google Scholar 

  72. Libedinsky C, Livingstone M (2011) Role of prefrontal cortex in conscious visual perception. J Neurosci 31(1):64–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liew W-S, Zou X, Yao L, Lian Y (2009) A 1-V 60-µW 16-channel interface chip for implantable neural recording. In: IEEE custom integrated circuits conference, no. CICC, 507–510

  74. Liu L, Zou X, Goh WL, Ramamoorthy R, Dawe G, Je M (2012) 800 nW 43 nV/√Hz neural recording amplifier with enhanced noise efficiency factor. Electron Lett 48(9):479

    Article  Google Scholar 

  75. Loeb GE, Peck RA (1996) Cuff electrodes for chronic stimulation and recording of peripheral nerve activity. J Neurosci Methods 64:95–103

    Article  CAS  PubMed  Google Scholar 

  76. Loi D, Carboni C, Angius G, Angotzi GN, Barbaro M, Raffo L, Raspopovic S, Navarro X (2011) Peripheral neural activity recording and stimulation system. IEEE Trans Biomed Circuits Syst 5:368–379

    Article  CAS  PubMed  Google Scholar 

  77. Lopez CM, Andrei A, Mitra S, Welkenhuysen M, Eberle W, Bartic C, Puers R, Yazicioglu RF, Gielen GGE (2014) An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J Solid State Circuits 49(1):248–261

    Article  Google Scholar 

  78. Majidzadeh V, Schmid A, Leblebici Y (2011) Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor. IEEE Trans Biomed Circuits Syst 5(3):262–271

    Article  CAS  PubMed  Google Scholar 

  79. Malagodi MS, Horch KW, Schoenberg AA (1989) An intrafascicular electrode for recording of action potentials in peripheral nerves. Ann Biomed Eng 17(4):397–410

    Article  CAS  PubMed  Google Scholar 

  80. Mendez A, Sawan M, Minagawa T, Wyndaele JJ (2013) Estimation of bladder volume from afferent neural activity. IEEE Trans Neural Syst Rehabil Eng 21(5):704–715

    Article  PubMed  Google Scholar 

  81. Metting van Rijn AC, Peper A, Grimbergen CA (1990) High-quality recording of bioelectric events. Part 1. Interference reduction, theory and practice. Med Biol Eng Comput 28(5):389–397

    Article  CAS  PubMed  Google Scholar 

  82. Micera S, Rossini PM, Rigosa J, Citi L, Carpaneto J, Raspopovic S, Tombini M, Cipriani C, Assenza G, Carrozza MC, Hoffmann K-P, Yoshida K, Navarro X, Dario P (2011) Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces. J Neuroeng Rehabil 8:53

    Article  PubMed  PubMed Central  Google Scholar 

  83. Miocinovic S, Somayajula S, Chitnis S, Vitek JL (2013) History, applications, and mechanisms of deep brain stimulation. JAMA Neurol 70(2):163–171

    Article  PubMed  Google Scholar 

  84. Miranda H, Gilja V, Chestek CA, Shenoy KV, Meng TH (2010) HermesD: a high-rate long-range wireless transmission system for simultaneous multichannel neural recording applications. IEEE Trans Biomed Circuits Syst 4(3):181–191

    Article  PubMed  Google Scholar 

  85. Morizio J, Irazoqui P, Go V, Parmentier J (2005) Wireless headstage for neural prosthetics. In: IEEE EMBS conference on neural engineering, pp 414–417

  86. Muller R, Gambini S, Rabaey JM (2013) A 0.013 mm 2, 5 µW, DC-Coupled neural signal acquisition IC With 0.5 V supply. IEEE J Solid State Circuits 47(1):232–243

    Article  Google Scholar 

  87. “Multichannel Systems.” [Online]. Available: http://www.multichannelsystems.com/

  88. Nag S, Thakor NV (2016) Implantable neurotechnologies: electrical stimulation and applications. Med Biol Eng Comput 54(1). doi:10.1007/s11517-015-1442-0

  89. Najafi K, Wise K (1986) An implantable multielectrode array with on-chip signal processing. IEEE J Solid State Circuits 21(6):1035–1044

    Article  Google Scholar 

  90. “NeuroNexus Technologies.” [Online]. Available: http://www.neuronexustech.com

  91. “Neuropace Inc.” [Online]. Available: http://www.neuropace.com/product/overview.html

  92. Ng KA, Xu YP (2013) A compact, low input capacitance neural recording amplifier. IEEE Trans Biomed Circuits Syst 7(5):610–620

    Article  CAS  PubMed  Google Scholar 

  93. Ng KA, Xu YP (2015) A multi-channel neural-recording amplifier system with 90 dB CMRR employing CMOS-inverter-based OTAs with CMFB through supply rails in 65 nm CMOS. In: ISSCC Dig.Tech. Papers, 206–207

  94. Ng KA, Xu L, Li X, Yen S, Je M, Xu YP, Tan TC (2012) An inductively powered CMOS multichannel bionic neural link for peripheral nerve function restoration. In: IEEE asian solid state circuits conference, 181–184

  95. Ng KA, Cutrone A, Bossi S, Nag S, Delgado-Martinez I, Sheshadri S, Poulard CA, Xu YP, Yen S-C, and Thakor NV (2015) An intrafascicular electrode with integrated amplifiers for peripheral nerve recording. In IEEE/EMBS conference on neural engineering (NER), 394–397

  96. Olofsson PS, Levine YA, Caravaca A, Chavan SS, Pavlov VA, Faltys M, Tracey KJ (2015) Single-pulse and unidirectional electrical activation of the cervical vagus nerve reduces tumor necrosis factor in endotoxemia. Bioelectron Med 2:37–42

    Google Scholar 

  97. Olsson R, Wise K (2005) A three-dimensional neural recording microsystem with implantable data compression circuitry. IEEE J Solid State Circuits 40(12):2796–2804

    Article  Google Scholar 

  98. Olsson R, Buhl D, Sirota AM, Buzsáki G, Wise KD (2005) Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. IEEE Trans Bio-Med Eng 52(7):1303–1311

    Article  Google Scholar 

  99. Patil AC, Thakor NV (2016) Implantable neurotechnologies: a review of micro and nano-electrodes for neural recording. Med Biol Eng Comput 54(1). doi:10.1007/s11517-015-1430-4

  100. Perelman Y, Ginosar R (2007) An integrated system for multichannel neuronal recording with spike/LFP separation, integrated A/D conversion and threshold detection. IEEE Trans Biomed Eng 54(1):130–137

    Article  PubMed  Google Scholar 

  101. Perlin GE, Sodagar AM, Wise KD (2006) Neural recording front-end designs for fully implantable neuroscience applications and neural prosthetic microsystems. In: Proceedings of international conference on IEEE engineering in medicine biology society, 2982–2985

  102. “Plexon”. [Online]. Available: http://www.plexon.com/products

  103. Qian C, Parramon J, Sanchez-Sinencio E (2011) A micropower low-noise neural recording front-end circuit for epileptic seizure detection. IEEE J Solid State Circuits 46(6):1392–1405

    Article  Google Scholar 

  104. Rhew H, Jeong J, Fredenburg J, Dodani S (2014) A fully self-contained logarithmic closed-loop deep brain stimulation SoC with wireless telemetry and wireless power management. IEEE J Solid State Circuits 49(10):2213–2227

    Article  Google Scholar 

  105. Rieger R, Taylor J, Demosthenous A, Donaldson N, Langlois PJ (2003) Design of a low-noise preamplifier for nerve cuff electrode recording. IEEE J Solid State Circuits 38(8):1373–1379

    Article  Google Scholar 

  106. Rieger R, Pal D, Taylor J, Clarke C, Langlois P, Donaldson N (2005) 10-channel very low noise ENG amplifier system using CMOS technology. In IEEE international symposium circuits and systems, vol. 1, 748–751

  107. Rieger R, Schuettler M, Pal D, Clarke C, Langlois P, Taylor J, Donaldson N (2006) Very low-noise ENG amplifier system using CMOS technology. IEEE Trans Neural Syst Rehabil Eng 14(4):427–437

    Article  PubMed  Google Scholar 

  108. Rodriguez-Perez A, Ruiz-Amaya J, Delgado-Restituto M, Rodriguez-Vazquez A (2012) A low-power programmable neural spike detection channel with embedded calibration and data compression. IEEE Trans Biomed Circuits Syst 6(2):87–100

    Article  PubMed  Google Scholar 

  109. Rossini PM, Micera S, Benvenuto A, Carpaneto J, Cavallo G, Citi L, Cipriani C, Denaro L, Denaro V, Di Pino G, Ferreri F, Guglielmelli E, Hoffmann KP, Raspopovic S, Rigosa J, Rossini L, Tombini M, Dario P (2010) Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol 121(5):777–783

    Article  PubMed  Google Scholar 

  110. Roy S, Wang X (2012) Wireless multi-channel single unit recording in freely moving and vocalizing primates. J Neurosci Methods 203(1):28–40

    Article  PubMed  Google Scholar 

  111. Roy K, Mukhopadhyay S, Mahmoodi-Meimand H (2003) Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc IEEE 91(2):305–327

    Article  CAS  Google Scholar 

  112. Rozman J, Zorko B, Bunc M, Mikac U, Tegou E (2002) Recording of ENGs from the nerves innervating the pancreas of a dog during the intravenous glucose tolerance test. Physiol Meas 23(4):695–705

    Article  PubMed  Google Scholar 

  113. Ruther P, Holzhammer T, Herwik S, Rich PD, Dalley JW, Paul O, Holtzman T (2011) Compact wireless neural recording system for small animals using silicon-based probe arrays. In: IEEE engineering in medicine and biology conference, 2284–2287

  114. Sacristan-Riquelme J, Oses MT (2007) Implantable stimulator and recording device for artificial prosthesis control. Microelectron J 38(12):1135–1149

    Article  Google Scholar 

  115. Sadiku MNO, Akujuobi CM (2004) Electrostatic discharge (ESD). IEEE Potentials 22(5):39–41

    Article  Google Scholar 

  116. Sahin M, Durand DM, Haxhiu MA (2000) Closed-loop stimulation of hypoglossal nerve in a dog model of upper airway obstruction. IEEE Trans Biomed Eng 47(7):919–925

    Article  CAS  PubMed  Google Scholar 

  117. Sahin NT, Pinker S, Cash SS, Schomer D, Halgren E (2009) Sequential processing of lexical, grammatical, and phonological information within Broca’s area. Science 326:445–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sanchez JC, Carmena JM, Lebedev MA, Nicolelis MAL, Harris JG, Principe JC (2004) Ascertaining the importance of neurons to develop better brain-machine interfaces. IEEE Trans Biomed Eng 51(6):943–953

    Article  PubMed  Google Scholar 

  119. Sansen WMC (2006) Analog design essentials. Springer, Netherlands

    Google Scholar 

  120. Santhanam G, Linderman MD, Gilja V, Afshar A, Ryu SI, Meng TH, Shenoy KV (2007) HermesB: a continuous neural recording system for freely behaving primates. IEEE Trans Biomed Eng 54(11):2037–2050

    Article  PubMed  Google Scholar 

  121. Santos FJ, Costa RM, Tecuapetla F (2011) Stimulation on demand: closing the loop on deep brain stimulation. Neuron 72:197–198

    Article  CAS  PubMed  Google Scholar 

  122. Sarpeshkar R, Wattanapanitch W, Arfin SK, Rapoport BI, Mandal S, Baker MW, Fee MS, Musallam S, Andersen RA (2008) Low-power circuits for brain-machine interfaces. IEEE Trans Biomed Circuits Syst 2(3):173–183

    Article  PubMed  Google Scholar 

  123. Schuettler M, Seetohul V, Rijkhoff NJM, Moeller FV, Donaldson N, Taylor J (2011) Fibre-selective recording from peripheral nerves using a multiple-contact cuff: report on pilot pig experiments. In: IEEE engineering in medicine and biology conference, 3103–3106

  124. Schuettler M, Donaldson N, Seetohul V, Taylor J (2013) Fibre-selective recording from the peripheral nerves of frogs using a multi-electrode cuff. J Neural Eng 10(3):036016

    Article  PubMed  Google Scholar 

  125. Shahrokhi F, Abdelhalim K, Serletis D, Carlen PL, Genov R (2010) The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Trans Biomed Circuits Syst 4(3):149–161

    Article  PubMed  Google Scholar 

  126. Shanechi MM, Hu RC, Williams ZM (2014) A cortical–spinal prosthesis for targeted limb movement in paralysed primate avatars. Nat Commun 5:1–9

    Article  CAS  Google Scholar 

  127. Sinjar T, Hinge B, Jorgensen A, Jensen ML, Haugland M (1992) Whole sensory nerve recordings with spiral nerve cuff electrode. In: IEEE engineering in medicine and biology conference, vol. 4, 1330–1331

  128. Sodagar AM, Perlin GE, Yao Y, Najafi K, Wise KD (2009) An implantable 64-channel wireless microsystem for single-unit neural recording. IEEE J Solid State Circuits 44(9):2591–2604

    Article  Google Scholar 

  129. Song S, Rooijakkers MJ, Harpe P, Rabotti C, Mischi M, Van Roermund AHM, Cantatore E (2013) A 430nW 64nV/√ Hz current-reuse telescopic amplifier for neural recording applications. In: Biomedical circuits and systems conference (BioCAS), 2013 IEEE, vol. 1, 322–325

  130. Stevenson IH, Kording KP (2011) How advances in neural recording affect data analysis. Nat Neurosci 14(2):139–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Steyaert MS, Sansen WMC, Chang Z (1987) A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J Solid State Circuits 6:1163–1168

    Article  Google Scholar 

  132. Suo Y, Zhang J, Xiong T, Chin PS, Etienne-Cummings R, Tran TD (2014) Energy-efficient multi-mode compressed sensing system for implantable neural recordings. IEEE Trans Biomed Circuits Syst 8(5):648–659

    Article  PubMed  Google Scholar 

  133. Szuts TA, Fadeyev V, Kachiguine S, Sher A, Grivich MV, Agrochão M, Hottowy P, Dabrowski W, Lubenov EV, Siapas AG, Uchida N, Litke AM, Meister M (2011) A wireless multi-channel neural amplifier for freely moving animals. Nat Neurosci 14(2):263–269

    Article  CAS  PubMed  Google Scholar 

  134. Taylor J, Masanotti D, Seetohul V, Hao S (2006) Some recent developments in the design of biopotential amplifiers for ENG recording systems. In: IEEE Asia Pacific conference on circuits and systems (APCAS)

  135. Thomas SJ, Harrison RR, Leonardo A, Reynolds MS (2012) A battery-free multichannel digital neural/EMG telemetry system for flying insects. IEEE Trans Biomed Circuits Syst 6(5):424–436

    Article  PubMed  Google Scholar 

  136. “Triangle Biosystems International”. [Online]. Available: http://www.trianglebiosystems.com/w-series-systems.html

  137. “Tucker-Davis Technologies”. [Online]. Available: http://www.tdt.com/

  138. Upshaw B, Sinkjaer T (1998) Digital signal processing algorithms for the detection of afferent nerve activity recorded from cuff electrodes. IEEE Trans Rehabil Eng 6(2):172–181

    Article  CAS  PubMed  Google Scholar 

  139. Uranga A, Navarro X, Barniol N (2004) Integrated CMOS amplifier for ENG signal recording. IEEE Trans Biomed Eng 51(12):2188–2194

    Article  CAS  PubMed  Google Scholar 

  140. von Haartman M, Mikael Ö (2007) 1/f noise performance of advanced Cmos devices. Springer, Berlin

    Book  Google Scholar 

  141. Wattanapanitch W, Sarpeshkar R (2011) A low-power 32-channel digitally programmable neural recording integrated circuit. IEEE Trans Biomed Circuits Syst 5(6):592–602

    Article  CAS  PubMed  Google Scholar 

  142. Wattanapanitch W, Fee M, Sarpeshkar R (2007) An energy-efficient micropower neural recording amplifier. IEEE Trans Biomed Circuits Syst 1(2):136–147

    Article  CAS  PubMed  Google Scholar 

  143. Webster JG (ed) (1998) Medical instrumentation: application and design. Wiley, New york

  144. Wise KD, Angell JB, Starr A (1970) An integrated-circuit approach to extracellular microelectrodes. IEEE Trans Bio-med Eng 17(3):238–247

    Article  CAS  Google Scholar 

  145. Wise KD, Anderson DJ, Hetke JF, Kipke DR, Najafi K (2004) Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc IEEE 92(1):76–97

    Article  CAS  Google Scholar 

  146. Wolf PD (2008) Thermal considerations for the design of an implanted cortical brain—machine interface (BMI). In: Indwelling neural implants, 1st ed. CRC Press, Boca Raton, 63–86

  147. Wong B, Mittal A, Cao Y, Starr GW (2005) Nano-CMOS circuit and physical design. Wiley, London

    Google Scholar 

  148. Wong BP, Mittal A, Starr GW, Zach F, Moroz V (2008) Nano-CMOS design for manufacturability: robust circuit and physical design for sub-65 nm technology nodes. Wiley, London

    Book  Google Scholar 

  149. Xu YP, Yen SC, Ng KA, Liu X, Tan TC (2012) A bionic neural link for peripheral nerve repair. In: Proceedings of international conference IEEE engineering in medicine and biology society, 1335–1338

  150. Yanagisawa T, Hirata M, Saitoh Y, Goto T, Kishima H, Fukuma R, Yokoi H, Kamitani Y, Yoshimine T (2011) Real-time control of a prosthetic hand using human electrocorticography signals. J Neurosurg 114(6):1715–1722

    Article  PubMed  Google Scholar 

  151. Yin M, Borton DA, Aceros J, Patterson WR, Nurmikko AV (2013) A 100-channel hermetically sealed implantable device for chronic wireless neurosensing applications. IEEE Trans Biomed Circuits Syst 7(2):115–128

    Article  PubMed  PubMed Central  Google Scholar 

  152. Yoo H, Hoof C (2011) Biomedical CMOS ICs. In: Biomedical CMOS ICs, 1st ed

  153. Yoshida K, Kurstjens GAM, Hennings K (2009) Experimental validation of the nerve conduction velocity selective recording technique using a multi-contact cuff electrode. Med Eng Phys 31(10):1261–1270

    Article  CAS  PubMed  Google Scholar 

  154. Zannad F, De Ferrari GM, Tuinenburg AE, Wright D, Brugada J, Butter C, Klein H, Stolen C, Meyer S, Stein KM, Ramuzat A, Schubert B, Daum D, Neuzil P, Botman C, Castel MA, D’Onofrio A, Solomon SD, Wold N, Ruble SB (2015) Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur Heart J 36(7):425–433

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zhang J, Mitra S, Suo Y, Cheng A, Xiong T, Michon F, Welkenhuysen M, Kloosterman F, Chin PS, Hsiao S (2015) A closed-loop compressive-sensing-based neural recording system. J Neural Eng 12(3):36005

    Article  Google Scholar 

  156. Zou X, Liu L, Cheong JH, Yao L, Li P, Cheng MY, Goh WL, Rajkumar R, Dawe GS, Cheng KW, Je M (2013) A 100-channel 1-mW implantable neural recording IC. IEEE Trans Circuits Syst I 60(10):2584–2596

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation (NRF) of Singapore (Project: NRF CRP 10201201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kian Ann Ng.

Ethics declarations

Conflict of interests

None of the authors have conflict of interests.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable as it is a review article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, K.A., Greenwald, E., Xu, Y. et al. Implantable neurotechnologies: a review of integrated circuit neural amplifiers. Med Biol Eng Comput 54, 45–62 (2016). https://doi.org/10.1007/s11517-015-1431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1431-3

Keywords

Navigation