Skip to main content
Log in

Assessment of heart rate variability by application of central tendency measure

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The heart rate variability (HRV) is an indicator of the subject homeostasis alterations. For a healthy individual, the HRV shows a nonlinear behavior, thus requiring a nonlinear approach to provide additional information about HRV dynamics. In this work, the nonlinear techniques, central tendency measure (CTM) and second-order difference plot, are applied to HRV analysis using the successive difference of RR intervals in a time series. In total are analyzed 170 tachograms collected by Polar monitor and then classified into three groups according to a cardiologist: healthy young adults, adults in preoperative evaluation for coronary artery bypass grafting for severe coronary disease and premature newborns. This approach identified the tachograms with high and low variability, which demonstrates the ability of CTM to classify and quantitatively characterize cardiac RR intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abásolo D, Hornero R, Gómez C, García M, López M (2006) Analysis of EEG background activity in Alzheimer’s disease patients with Lempel–Ziv complexity and central tendency measure. Med Eng Phys 28:315–322

    Article  PubMed  Google Scholar 

  2. Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS (2006) Heart rate variability: a review. Med Bio Eng Comput 44:1031–1051

    Article  Google Scholar 

  3. Alcaraz R, Rieta J (2012) Central tendency measure and wavelet transform combined in the non-invasive analysis of atrial fibrillation recordings. BioMed Eng OnLine 11:1–19

    Article  Google Scholar 

  4. Alvarez D, Hornero R, García M, del Campo F, Zamarron C (2007) Improving diagnostic ability of blood oxygen saturation from overnight pulse oximetry in obstructive sleep apnea detection by means of central tendency measure. Artif Intell Med 41:13–24

    Article  PubMed  Google Scholar 

  5. Bogaert C, Beckers F, Ramaekers D, Aubert A (2001) Analysis of heart rate variability with correlation dimension method in a normal population and in heart transplant patients. Auton Neurosci Basic Clin 90:142–147

    Article  CAS  Google Scholar 

  6. Braun C, Kowallik P, Freking A, Hadeler D, Kniffki KD, Meesmann M (1998) Demonstration of nonlinear components in heart rate variability of healthy persons. Am J Physiol Heart Circ Physiol 275:H1577–H1584

    CAS  Google Scholar 

  7. Brennan M, Palaniswami M, Kamen P (2001) Do existing measures of Poincar plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng 48(11):1342–1347

    Article  CAS  PubMed  Google Scholar 

  8. Casaleggio A, Cerutti S, Signorini M (1997) Study of the Lyapunov exponents in heart rate variability signals. Methods Inform Med 36:274–277

    CAS  Google Scholar 

  9. Clayton RH, Murray A (1999) Linear and non-linear analysis of the surface electrocardiogram during human ventricular fibrillation shows evidence of order in the underlying mechanism. Med Biol Eng Comput 37(3):354–358

    Article  CAS  PubMed  Google Scholar 

  10. Cohen M, Hudson D, Deedwania P (1996) Applying continuous chaotic modeling to cardiac signal analysis. IEEE Eng Med Biol 15(5):97–102

    Article  Google Scholar 

  11. de Godoy MF, Takakura IT, Correa PR, Machado MN, Miranda RC, Brandi AC (2009) Preoperative nonlinear behavior in heart rate variability predicts morbidity and mortality after coronary artery bypass graft surgery. Med Sci Monit 15(3):CR117–CR122

    PubMed  Google Scholar 

  12. dos Santos L, Barroso JJ, Macau EEN, de Godoy MF (2013) Application of an automatic adaptive filter for heart rate variability analysis. Med Eng Phys 35:1778

    Article  PubMed  Google Scholar 

  13. Farah BQ, Barros MVG, Balagopal B, Ritti-Dias RM (2014) Heart rate variability and cardiovascular risk factors in adolescent boys. J Pediatr 165(5):945–950

    Article  PubMed  Google Scholar 

  14. Gamelin FX, Berthoin S, Bosquet L (2006) Validity of the polar S810 heart rate monitor to measure RR intervals at rest. Med Sci Sports Exerc 38(5):887–893

    Article  PubMed  Google Scholar 

  15. Goshvarpour A, Goshvarpour A, Rahati S (2011) Analysis of lagged Poincaré plots in heart rate signals during meditation. Digit Signal Process 21:208–214

    Article  Google Scholar 

  16. Guzzetti S, Signorini M, Cogliati C, Mezzetti S, Porta A, Cerutti S, Malliani A (1996) Non-linear dynamics and chaotic indices in heart rate variability normal subjects and heart-transplanted patients. Cardiovasc Res 31:441–446

    Article  CAS  PubMed  Google Scholar 

  17. Hu J, Gao J, Tung W (2009) Characterizing heart rate variability by scale-dependent Lyapunov exponent. Chaos 19:028,506

    Article  Google Scholar 

  18. Jaiswal M, Urbina EM, Wadwa RP, Talton JW, D’agostino RB, Hamman RF, Fingerlin TE, Daniels SR, Marcovina SM, Dolan LM (2013) Reduced heart rate variability is associated with increased arterial stiffness in youth with type 1 diabetes. Diabetes Care 36:2351–2358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Jeong J, Gore J, Peterson B (2002) A method for determinism in short time series, and its application to stationary EEG. IEEE Trans Biomed Eng 49(11):1374–1379

    Article  PubMed  Google Scholar 

  20. Jovic A, Bogunovic N (2011) Electrocardiogram analysis using a combination of statistical, geometric, and nonlinear heart rate variability features. Artif Intell Med 51:175–186

    Article  PubMed  Google Scholar 

  21. Kamath C (2012) A new approach to detect congestive heart failure using Teager energy nonlinear scatter plot of R–R interval series. Med Eng Phys 34:841–848

    Article  PubMed  Google Scholar 

  22. Lerma C, Infante O, Perez-Grovas H, Jose M (2003) Poincare plot indexes of heart rate variability capture dynamic adaptations after haemodialysis in chronic renal failure patients. Clin Physiol Funct Imaging 23(2):72–80

    Article  PubMed  Google Scholar 

  23. Marwan N, Kurths J (2002) Nonlinear analysis of bivariate data with cross recurrence plots. Phys Lett A 302:299–307

    Article  CAS  Google Scholar 

  24. Marwan N, Romano M, Thiel M, Kurths J (2007) Recurrence plots for the analysis of complex systems. Phys Rep 438(5–6):237–329

    Article  Google Scholar 

  25. Miao X, He W, Yang H, Tai HM (2002) Heart rate variability characterization using correlation dimension. In: Circuits and systems, 2002. MWSCAS-2002. The 2002 45th Midwest symposium on, pp 447–450. IEEE. doi:10.1109/MWSCAS.2002.1187254

  26. Mourot L, Bouhaddi M, Perrey S, Rouillon JD, Regnard J (2004) Quantitative Poincaré plot analysis of heart rate variability: effect of endurance training. Eur J Appl Physiol 91:79–87

    Article  PubMed  Google Scholar 

  27. Nunan D, Donovan G, Jakovljevic DG, Hodges LD, Sandercock GR, Brodie DA (2009) Validity and reliability of short-term heart-rate variability from the polar S810. Med Sci Sports Exerc 41(1):243–250

    Article  PubMed  Google Scholar 

  28. Santamarta D, Abásolo D, Martínez-Madrigal M, Hornero R (2012) Characterisation of the intracranial pressure waveform during infusion studies by means of central tendency measure. Acta Neurochir 154:1595–1602

    Article  CAS  PubMed  Google Scholar 

  29. Selig FA, Tonolli ER, da Silva EVCM, Godoy MFD (2011) Heart rate variability in preterm and term neonates. Arquivos Brasileiros de Cardiologia 96(6):443–449

    Article  PubMed  Google Scholar 

  30. Sunkaria RK (2011) Recent trends in nonlinear methods of HRV analysis: a review. World Acad Sci Eng Technol 75:566–571

    Google Scholar 

  31. Task Force of the European Society of Cardiology and the North American Society of Pacing Electrophysiology (1996). Heart rate variability: standards of measurement, physiologic interpretation, and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  32. Thuraisingham RA (2009) A classification system to detect congestive heart failure using second-order difference plot of RR intervals. Cardiol Res Pract 2009:807, 379

  33. Thuraisingham RA, Tran Y, Boord P, Craig A (2007) Analysis of eyes open, eye closed EEG signals using second-order difference plot. Med Bio Eng Comput 45:1243–1249

    Article  Google Scholar 

  34. Vanderlei LC, Silva RA, Pastre CM, Azevedo FM, Godoy MF (2008) Comparison of the polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains. Braz J Med Biol Res 41(10):854–859

    Article  CAS  PubMed  Google Scholar 

  35. Xie HB, Dokos S (2013) A hybrid symplectic principal component analysis and central tendency measure method for detection of determinism in noisy time series with application to mechanomyography. Chaos 23:130–131

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico for financial support. L. dos Santos thanks Comissão de Aperfeiçoamento de Pessoal do Nível Superior (No. 88881062862/2014-01) for the grants, and EENM thanks Fundação de Amparo à Pesquisa do Estado de São Paulo (Grant No. 2011/50151-0) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurita dos Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, L., Barroso, J.J., Macau, E.E.N. et al. Assessment of heart rate variability by application of central tendency measure. Med Biol Eng Comput 53, 1231–1237 (2015). https://doi.org/10.1007/s11517-015-1390-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1390-8

Keywords

Navigation