Skip to main content
Log in

Review of cellular mechanotransduction on micropost substrates

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

As physical entities, living cells can sense and respond to various stimulations within and outside the body through cellular mechanotransduction. Any deviation in cellular mechanotransduction will not only undermine the orchestrated regulation of mechanical responses, but also lead to the breakdown of their physiological function. Therefore, a quantitative study of cellular mechanotransduction needs to be conducted both in experiments and in computational simulations to investigate the underlying mechanisms of cellular mechanotransduction. In this review, we present an overview of the current knowledge and significant progress in cellular mechanotransduction via micropost substrates. In the aspect of experimental studies, we summarize significant experimental progress and place an emphasis on the coupled relationship among cellular spreading, focal adhesion and contractility as well as the influence of substrate properties on force-involved cellular behaviors. In the other aspect of computational investigations, we outline a coupled framework including the biochemically motivated stress fiber model and thermodynamically motivated adhesion model and present their predicted biomechanical responses and then compare predicted simulation results with experimental observations to further explore the mechanisms of cellular mechanotransduction. At last, we discuss the future perspectives both in experimental technologies and in computational models, as well as facing challenges in the area of cellular mechanotransduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Addae-Mensah KA, Wikswo JP (2008) Measurement techniques for cellular biomechanics in vitro. Exp Biol Med (Maywood) 233(7):792–809. doi:10.3181/0710-MR-278

    Article  CAS  Google Scholar 

  2. Ananthakrishnan R, Ehrlicher A (2007) The forces behind cell movement. Int J Biol Sci 3(5):303–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson DE, Hinds MT (2011) Endothelial cell micropatterning: methods, effects, and applications. Ann Biomed Eng 39(9):2329–2345. doi:10.1007/s10439-011-0352-z

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bagorda A, Mihaylov VA, Parent CA (2006) Chemotaxis: moving forward and holding on to the past. Thromb Haemost 95(1):12–21. doi:10.1160/th05c07c0483

    CAS  PubMed  Google Scholar 

  5. Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3(5):466–472. doi:10.1038/35074532

    Article  CAS  PubMed  Google Scholar 

  6. Beningo KA, Dembo M, Kaverina I, Small JV, Wang YL (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 153(4):881–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beningo KA, Lo CM, Wang YL (2002) Flexible polyacrylamide substrata for the analysis of mechanical interactions at cell–substratum adhesions. Methods Cell Matrix Adhes 69:325–339. doi:10.1016/S0091-679x(02)69021-1

    CAS  Google Scholar 

  8. Berrier AL, Yamada KM (2007) Cell–matrix adhesion. J Cell Physiol 213(3):565–573. doi:10.1002/jcp.21237

    Article  CAS  PubMed  Google Scholar 

  9. Bershadsky A, Kozlov M, Geiger B (2006) Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol 18(5):472–481. doi:10.1016/j.ceb.2006.08.012

    Article  CAS  PubMed  Google Scholar 

  10. Bershadsky AD, Balaban NQ, Geiger B (2003) Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19:677–695. doi:10.1146/annurev.cellbio.19.111301.153011

    Article  CAS  PubMed  Google Scholar 

  11. Birchenall CE (1983) Introduction to metallurgical thermodynamics. J Am Chem Soc 105(13):4502

    Article  Google Scholar 

  12. Bloom RJ, George JP, Celedon A, Sun SX, Wirtz D (2008) Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking. Biophys J 95(8):4077–4088. doi:10.1529/biophysj.108.132738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blumenfeld R (2006) Isostaticity and controlled force transmission in the cytoskeleton: a model awaiting experimental evidence. Biophys J 91(5):1970–1983. doi:10.1529/biophysj.105.076703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Borghi N, Lowndes M, Maruthamuthu V, Gardel ML, Nelson WJ (2010) Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions. Proc Natl Acad Sci USA 107(30):13324–13329. doi:10.1073/pnas.1002662107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Breckenridge MT, Desai RA, Yang MT, Fu JP, Chen CS (2014) Substrates with engineered step changes in rigidity induce traction force polarity and durotaxis. Cell Mol Bioeng 7(1):26–34. doi:10.1007/s12195-013-0307-6

    Article  Google Scholar 

  16. Bruinsma R (2005) Theory of force regulation by nascent adhesion sites. Biophys J 89(1):87–94. doi:10.1529/biophysj.104.048280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB J 13:S101–S112

    CAS  PubMed  Google Scholar 

  18. Burton K, Taylor DL (1997) Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385(6615):450–454. doi:10.1038/385450a0

    Article  CAS  PubMed  Google Scholar 

  19. Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol 282(3):C595–C605

    Article  CAS  PubMed  Google Scholar 

  20. Califano JP, Reinhart-King CA (2010) Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell Mol Bioeng 3(1):68–75. doi:10.1007/s12195-010-0102-6

    Article  PubMed  PubMed Central  Google Scholar 

  21. Campbell JJ, Blain EJ, Chowdhury TT, Knight MM (2007) Loading alters actin dynamics and up-regulates cofilin gene expression in chondrocytes. Biochem Biophys Res Commun 361(2):329–334. doi:10.1016/j.bbrc.2007.06.185

    Article  CAS  PubMed  Google Scholar 

  22. Charras GT, Horton MA (2002) Determination of cellular strains by combined atomic force microscopy and finite element modeling. Biophys J 83(2):858–879. doi:10.1016/S0006-3495(02)75214-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen CS (2008) Mechanotransduction—a field pulling together? J Cell Sci 121(Pt 20):3285–3292. doi:10.1242/jcs.023507

    Article  CAS  PubMed  Google Scholar 

  24. Chen CS, Tan J, Tien J (2004) Mechanotransduction at cell–matrix and cell–cell contacts. Annu Rev Biomed Eng 6:275–302. doi:10.1146/annurev.bioeng.6.040803.140040

    Article  CAS  PubMed  Google Scholar 

  25. Chen KD, Li YS, Kim M, Li S, Yuan S, Chien S, Shyy JY (1999) Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem 274(26):18393–18400

    Article  CAS  PubMed  Google Scholar 

  26. Cheng Q, Almasri M, Sun Z, Meininger GA (2010) Micropost array for force mapping of vascular smooth muscle cells. IEEE Sens. doi:10.1109/Icsens.2010.5690288

    Google Scholar 

  27. Cheng Q, Sun Z, Meininger G, Almasri M (2013) PDMS elastic micropost arrays for studying vascular smooth muscle cells. Sens Actuators B Chem 188:1055–1063. doi:10.1016/j.snb.2013.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chrzanowska-Wodnicka M, Burridge K (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133(6):1403–1415

    Article  CAS  PubMed  Google Scholar 

  29. Curtis A, Riehle M (2001) Tissue engineering: the biophysical background. Phys Med Biol 46(4):R47–R65

    Article  CAS  PubMed  Google Scholar 

  30. Curtze S, Dembo M, Miron M, Jones DB (2004) Dynamic changes in traction forces with DC electric field in osteoblast-like cells. J Cell Sci 117(Pt 13):2721–2729. doi:10.1242/jcs.01119

    Article  CAS  PubMed  Google Scholar 

  31. Dado D, Levenberg S (2009) Cell–scaffold mechanical interplay within engineered tissue. Semin Cell Dev Biol 20(6):656–664. doi:10.1016/j.semcdb.2009.02.001

    Article  CAS  PubMed  Google Scholar 

  32. Dao M, Lim CT, Suresh S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 51(11–12):2259–2280. doi:10.1016/j.jmps.2003.09.019

    Article  Google Scholar 

  33. Das T, Maiti TK, Chakraborty S (2008) Traction force microscopy on-chip: shear deformation of fibroblast cells. Lab Chip 8(8):1308–1318. doi:10.1039/b803925a

    Article  CAS  PubMed  Google Scholar 

  34. Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75(3):519–560

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Delanoe-Ayari H, Iwaya S, Maeda YT, Inose J, Riviere C, Sano M, Rieu JP (2008) Changes in the magnitude and distribution of forces at different Dictyostelium developmental stages. Cell Motil Cytoskelet 65(4):314–331. doi:10.1002/Cm.20262

    Article  CAS  Google Scholar 

  36. Dembo M, Oliver T, Ishihara A, Jacobson K (1996) Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys J 70(4):2008–2022. doi:10.1016/S0006-3495(96)79767-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76(4):2307–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deshpande VS, McMeeking RM, Evans AG (2006) A bio-chemo-mechanical model for cell contractility. Proc Natl Acad Sci USA 103(38):14015–14020. doi:10.1073/pnas.0605837103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deshpande VS, McMeeking RM, Evans AG (2007) A model for the contractility of the cytoskeleton including the effects of stress-fibre formation and dissociation. Proc R Soc A Math Phys Eng Sci 463(2079):787–815. doi:10.1098/rspa.2006.1793

    Article  CAS  Google Scholar 

  40. Deshpande VS, Mrksich M, McMeeking RM, Evans AG (2008) A bio-mechanical model for coupling cell contractility with focal adhesion formation. J Mech Phys Solids 56(4):1484–1510. doi:10.1016/j.jmps.2007.08.006

    Article  CAS  Google Scholar 

  41. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143. doi:10.1126/science.1116995

    Article  CAS  PubMed  Google Scholar 

  42. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324(5935):1673–1677. doi:10.1126/science.1171643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dowling EP, Ronan W, McGarry JP (2013) Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading. Acta Biomater 9(4):5943–5955. doi:10.1016/j.actbio.2012.12.021

    Article  CAS  PubMed  Google Scholar 

  44. Doyle AD, Lee J (2005) Cyclic changes in keratocyte speed and traction stress arise from Ca2+-dependent regulation of cell adhesiveness. J Cell Sci 118(Pt 2):369–379. doi:10.1242/jcs.01590

    Article  CAS  PubMed  Google Scholar 

  45. du Roure O, Dequidt C, Richert A, Austin RH, Buguin A, Chavrier P, Silberzan P, Ladoux B (2004) Microfabricated arrays of elastomeric posts to study cellular mechanics. Microfluid BioMEMS Med Microsyst II 5345:26–34. doi:10.1117/12.530688

    Article  Google Scholar 

  46. du Roure O, Saez A, Buguin A, Austin RH, Chavrier P, Silberzan P, Ladoux B (2005) Force mapping in epithelial cell migration. Proc Natl Acad Sci USA 102(7):2390–2395. doi:10.1073/pnas.0408482102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183. doi:10.1038/nature10137

    Article  CAS  PubMed  Google Scholar 

  48. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442(7101):403–411. doi:10.1038/nature05063

    Article  CAS  PubMed  Google Scholar 

  49. Engler A, Bacakova L, Newman C, Hategan A, Griffin M, Discher D (2004) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86(1 Pt 1):617–628. doi:10.1016/S0006-3495(04)74140-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. doi:10.1016/j.cell.2006.06.044

    Article  CAS  PubMed  Google Scholar 

  51. Engler AJ, Sweeney HL, Discher DE, Schwarzbauer JE (2007) Extracellular matrix elasticity directs stem cell differentiation. J Musculoskelet Neuronal Interact 7(4):335

    CAS  PubMed  Google Scholar 

  52. Franck C, Maskarinec SA, Tirrell DA, Ravichandran G (2011) Three-dimensional traction force microscopy: a new tool for quantifying cell–matrix interactions. PLoS One 6(3):e17833. doi:10.1371/journal.pone.0017833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Franke RP, Grafe M, Schnittler H, Seiffge D, Mittermayer C, Drenckhahn D (1984) Induction of human vascular endothelial stress fibers by fluid shear-stress. Nature 307(5952):648–649. doi:10.1038/307648a0

    Article  CAS  PubMed  Google Scholar 

  54. Fu J, Wang YK, Yang MT, Desai RA, Yu X, Liu Z, Chen CS (2010) Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods 7(9):733–736. doi:10.1038/nmeth.1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Galbraith CG, Sheetz MP (1997) A micromachined device provides a new bend on fibroblast traction forces. Proc Natl Acad Sci USA 94(17):9114–9118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Galbraith CG, Sheetz MP (1998) Forces on adhesive contacts affect cell function. Curr Opin Cell Biol 10(5):566–571

    Article  CAS  PubMed  Google Scholar 

  57. Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. J Cell Biol 159(4):695–705. doi:10.1083/jcb.200204153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ganz A, Lambert M, Saez A, Silberzan P, Buguin A, Mege RM, Ladoux B (2006) Traction forces exerted through N-cadherin contacts. Biol Cell 98(12):721–730. doi:10.1042/Bc20060039

    Article  CAS  PubMed  Google Scholar 

  59. Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2(11):793–805. doi:10.1038/35099066

    Article  CAS  PubMed  Google Scholar 

  60. Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10(1):21–33. doi:10.1038/Nrm2593

    Article  CAS  PubMed  Google Scholar 

  61. Ghibaudo M, Saez A, Trichet L, Xayaphoummine A, Browaeys J, Silberzan P, Buguin A, Ladoux B (2008) Traction forces and rigidity sensing regulate cell functions. Soft Matter 4(9):1836–1843. doi:10.1039/B804103b

    Article  CAS  Google Scholar 

  62. Giannone G, Sheetz MP (2006) Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol 16(4):213–223. doi:10.1016/j.tcb.2006.02.005

    Article  CAS  PubMed  Google Scholar 

  63. Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081. doi:10.1126/science.1191035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guck J, Lautenschlager F, Paschke S, Beil M (2010) Critical review: cellular mechanobiology and amoeboid migration. Integr Biol 2(11–12):575–583. doi:10.1039/c0ib00050g

    Article  Google Scholar 

  65. Hahn C, Schwartz MA (2009) Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 10(1):53–62. doi:10.1038/nrm2596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Han SJ, Bielawski KS, Ting LH, Rodriguez ML, Sniadecki NJ (2012) Decoupling substrate stiffness, spread area, and micropost density: a close spatial relationship between traction forces and focal adhesions. Biophys J 103(4):640–648. doi:10.1016/j.bpj.2012.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Han SJ, Sniadecki NJ (2010) Nanotechnology usages for cellular adhesion and traction forces. Cell Biomolcular Mech Mechanobiol 4:177–200. doi:10.1007/8415_2010_26

    Article  Google Scholar 

  68. Han SJ, Sniadecki NJ (2011) Simulations of the contractile cycle in cell migration using a bio-chemical–mechanical model. Comput Methods Biomech Biomed Eng 14(5):459–468. doi:10.1080/10255842.2011.554412

    Article  Google Scholar 

  69. Harris AK, Stopak D, Wild P (1981) Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290(5803):249–251. doi:10.1038/290249a0

    Article  CAS  PubMed  Google Scholar 

  70. Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208(4440):177–179

    Article  CAS  PubMed  Google Scholar 

  71. Higa A (2012) Cellular mechanotransduction via microfabricated post arrays. Ph.D. thesis, University of California, Berkeley, CA

  72. Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475(7356):316–323. doi:10.1038/nature10316

    Article  CAS  PubMed  Google Scholar 

  73. Huang H, Kamm RD, Lee RT (2004) Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol Cell Physiol 287(1):C1–C11. doi:10.1152/ajpcell.00559.2003

    Article  CAS  PubMed  Google Scholar 

  74. Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599. doi:10.1146/annurev.physiol.59.1.575

    Article  CAS  PubMed  Google Scholar 

  75. Isenberg BC, Dimilla PA, Walker M, Kim S, Wong JY (2009) Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys J 97(5):1313–1322. doi:10.1016/j.bpj.2009.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10(1):63–73. doi:10.1038/nrm2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kaunas R, Nguyen P, Usami S, Chien S (2005) Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc Natl Acad Sci USA 102(44):15895–15900. doi:10.1073/pnas.0506041102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kaverina I, Krylyshkina O, Beningo K, Anderson K, Wang YL, Small JV (2002) Tensile stress stimulates microtubule outgrowth in living cells. J Cell Sci 115(Pt 11):2283–2291

    CAS  PubMed  Google Scholar 

  79. Knight MM, Toyoda T, Lee DA, Bader DL (2006) Mechanical compression and hydrostatic pressure induce reversible changes in actin cytoskeletal organisation in chondrocytes in agarose. J Biomech 39(8):1547–1551. doi:10.1016/j.jbiomech.2005.04.006

    Article  CAS  PubMed  Google Scholar 

  80. Kolega J (1986) Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture. J Cell Biol 102(4):1400–1411

    Article  CAS  PubMed  Google Scholar 

  81. Ladoux B, Anon E, Lambert M, Rabodzey A, Hersen P, Buguin A, Silberzan P, Mege RM (2010) Strength dependence of cadherin-mediated adhesions. Biophys J 98(4):534–542. doi:10.1016/j.bpj.2009.10.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lam RHW, Sun YB, Chen WQ, Fu JP (2012) Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis. Lab Chip 12(10):1865–1873. doi:10.1039/C2lc21146g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lam RHW, Weng SN, Lu W, Fu JP (2012) Live-cell subcellular measurement of cell stiffness using a microengineered stretchable micropost array membrane. Integr Biol 4(10):1289–1298. doi:10.1039/C2ib20134h

    Article  CAS  Google Scholar 

  84. Lee J, Leonard M, Oliver T, Ishihara A, Jacobson K (1994) Traction forces generated by locomoting keratocytes. J Cell Biol 127(6 Pt 2):1957–1964

    Article  CAS  PubMed  Google Scholar 

  85. Lemmon CA, Sniadecki NJ, Ruiz SA, Tan JT, Romer LH, Chen CS (2005) Shear force at the cell–matrix interface: enhanced analysis for microfabricated post array detectors. Mech Chem Biosyst 2(1):1–16

    PubMed  PubMed Central  Google Scholar 

  86. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906. doi:10.1016/j.cell.2009.10.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li B, Xie L, Starr ZC, Yang Z, Lin JS, Wang JH (2007) Development of micropost force sensor array with culture experiments for determination of cell traction forces. Cell Motil Cytoskele 64(7):509–518. doi:10.1002/cm.20200

    Article  Google Scholar 

  88. Lin YC, Kramer CM, Chen CS, Reich DH (2012) Probing cellular traction forces with magnetic nanowires and microfabricated force sensor arrays. Nanotechnology 23(7):075101. doi:10.1088/0957-4484/23/7/075101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, Tschumperlin DJ (2010) Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol 190(4):693–706. doi:10.1083/jcb.201004082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu M, Post M (2000) Invited review: mechanochemical signal transduction in the fetal lung. J Appl Physiol 89(5):2078–2084

    CAS  PubMed  Google Scholar 

  91. Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS (2010) Mechanical tugging force regulates the size of cell–cell junctions. Proc Natl Acad Sci USA 107(22):9944–9949. doi:10.1073/pnas.0914547107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lo CM, Buxton DB, Chua GCH, Dembo M, Adelstein RS, Wang YL (2004) Nonmuscle myosin IIB is involved in the guidance of fibroblast migration. Mol Biol Cell 15(3):982–989. doi:10.1091/mbc.E03-06-0359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55. doi:10.1038/Nbt1055

    Article  CAS  PubMed  Google Scholar 

  95. Mammoto T, Ingber DE (2010) Mechanical control of tissue and organ development. Development 137(9):1407–1420. doi:10.1242/dev.024166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mann JM, Lam RH, Weng S, Sun Y, Fu J (2012) A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response. Lab Chip 12(4):731–740. doi:10.1039/c2lc20896b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Maruthamuthu V, Sabass B, Schwarz US, Gardel ML (2011) Cell-ECM traction force modulates endogenous tension at cell–cell contacts. Proc Natl Acad Sci USA 108(12):4708–4713. doi:10.1073/pnas.1011123108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Matthews BD, Overby DR, Mannix R, Ingber DE (2006) Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci 119(Pt 3):508–518. doi:10.1242/jcs.02760

    Article  CAS  PubMed  Google Scholar 

  99. McGarry JP, Fu J, Yang MT, Chen CS, McMeeking RM, Evans AG, Deshpande VS (2009) Simulation of the contractile response of cells on an array of micro-posts. Philos Trans A Math Phys Eng Sci 367(1902):3477–3497. doi:10.1098/rsta.2009.0097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mitrossilis D, Fouchard J, Guiroy A, Desprat N, Rodriguez N, Fabry B, Asnacios A (2009) Single-cell response to stiffness exhibits muscle-like behavior. Proc Natl Acad Sci USA 106(43):18243–18248. doi:10.1073/pnas.0903994106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mohammadi H, McCulloch CA (2014) Impact of elastic and inelastic substrate behaviors on mechanosensation. Soft Matter 10(3):408–420. doi:10.1039/c3sm52729h

    Article  CAS  PubMed  Google Scholar 

  102. Mohrdieck C, Wanner A, Roos W, Roth A, Sackmann E, Spatz JP, Arzt E (2005) A theoretical description of elastic pillar substrates in biophysical experiments. ChemPhysChem 6(8):1492–1498. doi:10.1002/cphc.200500109

    Article  CAS  PubMed  Google Scholar 

  103. Munevar S, Wang Y, Dembo M (2001) Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys J 80(4):1744–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nagayama K, Adachi A, Matsumoto T (2011) Heterogeneous response of traction force at focal adhesions of vascular smooth muscle cells subjected to macroscopic stretch on a micropillar substrate. J Biomech 44(15):2699–2705. doi:10.1016/j.jbiomech.2011.07.023

    Article  PubMed  Google Scholar 

  105. Neilson MP, Veltman DM, van Haastert PJ, Webb SD, Mackenzie JA, Insall RH (2011) Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour. PLoS Biol 9(5):e1000618. doi:10.1371/journal.pbio.1000618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci USA 102(33):11594–11599. doi:10.1073/pnas.0502575102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nicolas A, Geiger B, Safran SA (2004) Cell mechanosensitivity controls the anisotropy of focal adhesions. Proc Natl Acad Sci USA 101(34):12520–12525. doi:10.1073/pnas.0403539101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nicolas A, Safran SA (2006) Limitation of cell adhesion by the elasticity of the extracellular matrix. Biophys J 91(1):61–73. doi:10.1529/biophysj.105.077115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81(1):53–62

    Article  CAS  PubMed  Google Scholar 

  110. Novak IL, Slepchenko BM, Mogilner A, Loew LM (2004) Cooperativity between cell contractility and adhesion. Phys Rev Lett. doi:10.1103/Physrevlett.93.268109

    Google Scholar 

  111. Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10(1):11–20. doi:10.1016/j.devcel.2005.12.006

    Article  CAS  PubMed  Google Scholar 

  112. Parker KK, Brock AL, Brangwynne C, Mannix RJ, Wang N, Ostuni E, Geisse NA, Adams JC, Whitesides GM, Ingber DE (2002) Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J 16(10):1195–1204. doi:10.1096/fj.02-0038com

    Article  CAS  PubMed  Google Scholar 

  113. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254. doi:10.1016/j.ccr.2005.08.010

    Article  CAS  PubMed  Google Scholar 

  114. Pathak A, Deshpande VS, McMeeking RM, Evans AG (2008) The simulation of stress fibre and focal adhesion development in cells on patterned substrates. J R Soc Interface 5(22):507–524. doi:10.1098/rsif.2007.1182

    Article  PubMed  PubMed Central  Google Scholar 

  115. Pathak A, McMeeking RM, Evans AG, Deshpande VS (2011) An analysis of the cooperative mechano-sensitive feedback between intracellular signaling, focal adhesion development, and stress fiber contractility. J Appl Mech Trans ASME. doi:10.1115/1.4003705

    Google Scholar 

  116. Pelham RJ Jr, Wang Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94(25):13661–13665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Petroll WM, Ma L, Jester JV (2003) Direct correlation of collagen matrix deformation with focal adhesion dynamics in living corneal fibroblasts. J Cell Sci 116(Pt 8):1481–1491

    Article  CAS  PubMed  Google Scholar 

  118. Petronis S, Gold J, Kasemo B (2003) Microfabricated force-sensitive elastic substrates for investigation of mechanical cell–substrate interactions. J Micromech Microeng 13(6):900–913. doi:10.1088/0960-1317/13/6/313

    Article  Google Scholar 

  119. Raab M, Swift J, Dingal PC, Shah P, Shin JW, Discher DE (2012) Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J Cell Biol 199(4):669–683. doi:10.1083/jcb.201205056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rabodzey A, Alcaide P, Luscinskas FW, Ladoux B (2008) Mechanical forces induced by the transendothelial migration of human neutrophils. Biophys J 95(3):1428–1438. doi:10.1529/biophysj.107.119156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rape AD, Guo WH, Wang YL (2011) The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials 32(8):2043–2051. doi:10.1016/j.biomaterials.2010.11.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Reinhart-King CA, Dembo M, Hammer DA (2005) The dynamics and mechanics of endothelial cell spreading. Biophys J 89(1):676–689. doi:10.1529/biophysj.104.054320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ricart BG, Yang MT, Hunter CA, Chen CS, Hammer DA (2011) Measuring traction forces of motile dendritic cells on micropost arrays. Biophys J 101(11):2620–2628. doi:10.1016/j.bpj.2011.09.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153(6):1175–1185. doi:10.1083/jcb.153.6.1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Roberts SR, Knight MM, Lee DA, Bader DL (2001) Mechanical compression influences intracellular Ca2+ signaling in chondrocytes seeded in agarose constructs. J Appl Physiol 90(4):1385–1391

    CAS  PubMed  Google Scholar 

  126. Rodriguez AG, Han SJ, Regnier M, Sniadecki NJ (2011) Substrate stiffness increases twitch power of neonatal cardiomyocytes in correlation with changes in myofibril structure and intracellular calcium. Biophys J 101(10):2455–2464. doi:10.1016/j.bpj.2011.09.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ronan W, Pathak A, Deshpande VS, McMeeking RM, McGarry JP (2013) Simulation of the mechanical response of cells on micropost substrates. J Biomech Eng 135(10):101012. doi:10.1115/1.4025114

    Article  PubMed  Google Scholar 

  128. Sabass B, Gardel ML, Waterman CM, Schwarz US (2008) High resolution traction force microscopy based on experimental and computational advances. Biophys J 94(1):207–220. doi:10.1529/biophysj.107.113670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Saez A, Anon E, Ghibaudo M, du Roure O, Di Meglio JM, Hersen P, Silberzan P, Buguin A, Ladoux B (2010) Traction forces exerted by epithelial cell sheets. J Phys Condens Matter 22(19):194119. doi:10.1088/0953-8984/22/19/194119

    Article  CAS  PubMed  Google Scholar 

  130. Saez A, Buguin A, Silberzan P, Ladoux B (2005) Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys J 89(6):L52–L54. doi:10.1529/biophysj.105.071217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Saez A, Ghibaudo M, Buguin A, Silberzan P, Ladoux B (2007) Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc Natl Acad Sci USA 104(20):8281–8286. doi:10.1073/pnas.0702259104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Saez A, Ladoux B, du Roure O, Silberzan P, Buguin A, Chavrier P, Austin RH (2005) An array of micro fabricated pillars to map forces during epithelial cell migration. Biophys J 88(1):518a

    Google Scholar 

  133. Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95(9):4426–4438. doi:10.1529/biophysj.108.132217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Satcher RL Jr, Dewey CF Jr (1996) Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophys J 71(1):109–118. doi:10.1016/S0006-3495(96)79206-8

    Article  PubMed  PubMed Central  Google Scholar 

  135. Sawada Y, Sheetz MP (2002) Force transduction by Triton cytoskeletons. J Cell Biol 156(4):609–615. doi:10.1083/jcb.200110068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Schmitz GJ, Brucker C, Jacobs P (2005) Manufacture of high-aspect-ratio micro-hair sensor arrays. J Micromech Microeng 15(10):1904–1910. doi:10.1088/0960-1317/15/10/016

    Article  Google Scholar 

  137. Schoen I, Hu W, Klotzsch E, Vogel V (2010) Probing cellular traction forces by micropillar arrays: contribution of substrate warping to pillar deflection. Nano Lett 10(5):1823–1830. doi:10.1021/nl100533c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Schwartz MA (2010) Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2(12):a005066. doi:10.1101/cshperspect.a005066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Schwarz US, Balaban NQ, Riveline D, Bershadsky A, Geiger B, Safran SA (2002) Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys J 83(3):1380–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sen S, Kumar S (2010) Combining mechanical and optical approaches to dissect cellular mechanobiology. J Biomech 43(1):45–54. doi:10.1016/j.jbiomech.2009.09.008

    Article  PubMed  PubMed Central  Google Scholar 

  141. Shemesh T, Geiger B, Bershadsky AD, Kozlov MM (2005) Focal adhesions as mechanosensors: a physical mechanism. Proc Natl Acad Sci USA 102(35):12383–12388. doi:10.1073/pnas.0500254102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shraiman BI (2005) Mechanical feedback as a possible regulator of tissue growth. Proc Natl Acad Sci USA 102(9):3318–3323. doi:10.1073/pnas.0404782102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sniadecki NJ, Anguelouch A, Yang MT, Lamb CM, Liu Z, Kirschner SB, Liu Y, Reich DH, Chen CS (2007) Magnetic microposts as an approach to apply forces to living cells. Proc Natl Acad Sci USA 104(37):14553–14558. doi:10.1073/pnas.0611613104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sniadecki NJ, Chen CS (2007) Microfabricated silicone elastomeric post arrays for measuring traction forces of adherent cells. Methods Cell Biol 83:313–328. doi:10.1016/S0091-679X(07)83013-5

    Article  CAS  PubMed  Google Scholar 

  145. Sniadecki NJ, Desai RA, Ruiz SA, Chen CS (2006) Nanotechnology for cell–substrate interactions. Ann Biomed Eng 34(1):59–74. doi:10.1007/s10439-005-9006-3

    Article  PubMed  Google Scholar 

  146. Sniadecki NJ, Lamb CM, Liu Y, Chen CS, Reich DH (2008) Magnetic microposts for mechanical stimulation of biological cells: fabrication, characterization, and analysis. Rev Sci Instrum 79(4):044302. doi:10.1063/1.2906228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Sochol RD, Higa AT, Janairo RRR, Li S, Lin L (2011) Effects of micropost spacing and stiffness on cell motility. Micro Nano Lett 6(5):323–326. doi:10.1049/mnl.2011.0020

    Article  CAS  Google Scholar 

  148. Sochol RD, Higa AT, Janairo RRR, Li S, Lin LW (2011) Unidirectional mechanical cellular stimuli via micropost array gradients. Soft Matter 7(10):4606–4609. doi:10.1039/C1sm05163f

    Article  CAS  Google Scholar 

  149. Spatz JP, Geiger B (2007) Molecular engineering of cellular environments: cell adhesion to nano-digital surfaces. Methods Cell Biol 83:89–111. doi:10.1016/S0091-679X(07)83005-6

    Article  CAS  PubMed  Google Scholar 

  150. Stephens L, Milne L, Hawkins P (2008) Moving towards a better understanding of chemotaxis. Curr Biol 18(11):R485–R494. doi:10.1016/j.cub.2008.04.048

    Article  CAS  PubMed  Google Scholar 

  151. Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA (2005) Nonlinear elasticity in biological gels. Nature 435(7039):191–194. doi:10.1038/nature03521

    Article  CAS  PubMed  Google Scholar 

  152. Sun Y, Chen CS, Fu J (2012) Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu Rev Biophys 41:519–542. doi:10.1146/annurev-biophys-042910-155306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Sun Y, Villa-Diaz LG, Lam RH, Chen W, Krebsbach PH, Fu J (2012) Mechanics regulates fate decisions of human embryonic stem cells. PLoS One 7(5):e37178. doi:10.1371/journal.pone.0037178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sun Y, Weng S, Fu J (2012) Microengineered synthetic cellular microenvironment for stem cells. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(4):414–427. doi:10.1002/wnan.1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341(6149):1240104. doi:10.1126/science.1240104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Takahashi M, Ishida T, Traub O, Corson MA, Berk BC (1997) Mechanotransduction in endothelial cells: temporal signaling events in response to shear stress. J Vasc Res 34(3):212–219

    Article  CAS  PubMed  Google Scholar 

  157. Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100(4):1484–1489. doi:10.1073/pnas.0235407100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Thery M, Racine V, Piel M, Pepin A, Dimitrov A, Chen Y, Sibarita JB, Bornens M (2006) Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci USA 103(52):19771–19776. doi:10.1073/pnas.0609267103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ting LH, Jahn JR, Jung JI, Shuman BR, Feghhi S, Han SJ, Rodriguez ML, Sniadecki NJ (2012) Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions. Am J Physiol Heart Circ Physiol 302(11):H2220–H2229. doi:10.1152/ajpheart.00975.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tolic-Norrelykke IM, Wang N (2005) Traction in smooth muscle cells varies with cell spreading. J Biomech 38(7):1405–1412. doi:10.1016/j.jbiomech.2004.06.027

    Article  PubMed  Google Scholar 

  161. Trichet L, Le Digabel J, Hawkins RJ, Vedula SR, Gupta M, Ribrault C, Hersen P, Voituriez R, Ladoux B (2012) Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc Natl Acad Sci USA 109(18):6933–6938. doi:10.1073/pnas.1117810109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Vaziri A, Gopinath A (2008) Cell and biomolecular mechanics in silico. Nat Mater 7(1):15–23. doi:10.1038/nmat2040

    Article  CAS  PubMed  Google Scholar 

  163. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7(4):265–275. doi:10.1038/nrm1890

    Article  CAS  PubMed  Google Scholar 

  164. Wang JH, Goldschmidt-Clermont P, Wille J, Yin FC (2001) Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. J Biomech 34(12):1563–1572

    Article  CAS  PubMed  Google Scholar 

  165. Wang JH, Goldschmidt-Clermont P, Yin FC (2000) Contractility affects stress fiber remodeling and reorientation of endothelial cells subjected to cyclic mechanical stretching. Ann Biomed Eng 28(10):1165–1171

    Article  CAS  PubMed  Google Scholar 

  166. Wang JH, Lin JS (2007) Cell traction force and measurement methods. Biomech Model Mechanobiol 6(6):361–371. doi:10.1007/s10237-006-0068-4

    Article  PubMed  Google Scholar 

  167. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell-surface and through the cytoskeleton. Science 260(5111):1124–1127. doi:10.1126/science.7684161

    Article  CAS  PubMed  Google Scholar 

  168. Wang N, Ostuni E, Whitesides GM, Ingber DE (2002) Micropatterning tractional forces in living cells. Cell Motil Cytoskelet 52(2):97–106. doi:10.1002/cm.10037

    Article  Google Scholar 

  169. Wang N, Tolic-Norrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, Stamenovic D (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282(3):C606–C616. doi:10.1152/ajpcell.00269.2001

    Article  CAS  PubMed  Google Scholar 

  170. Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10(1):75–82. doi:10.1038/Nrm2594

    Article  CAS  PubMed  Google Scholar 

  171. Wang YL, Pelham RJ Jr (1998) Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol 298:489–496

    Article  CAS  PubMed  Google Scholar 

  172. Wang Z, Geng Y (2015) Unidirectional cell crawling model guided by extracellular cues. J Biomech Eng 137(3):031006. doi:10.1115/1.4029301

    Article  Google Scholar 

  173. Warshaw DM, Desrosiers JM, Work SS, Trybus KM (1990) Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J Cell Biol 111(2):453–463

    Article  CAS  PubMed  Google Scholar 

  174. Wei Z, Deshpande VS, McMeeking RM, Evans AG (2008) Analysis and interpretation of stress fiber organization in cells subject to cyclic stretch. J Biomech Eng 130(3):031009. doi:10.1115/1.2907745

    Article  PubMed  Google Scholar 

  175. Weng S, Fu J (2011) Synergistic regulation of cell function by matrix rigidity and adhesive pattern. Biomaterials 32(36):9584–9593. doi:10.1016/j.biomaterials.2011.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wirtz HR, Dobbs LG (2000) The effects of mechanical forces on lung functions. Respir Physiol 119(1):1–17

    Article  CAS  PubMed  Google Scholar 

  177. Wozniak MA, Chen CS (2009) Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol 10(1):34–43. doi:10.1038/nrm2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Xiao T, Takagi J, Coller BS, Wang JH, Springer TA (2004) Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432(7013):59–67. doi:10.1038/nature02976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Yang MT, Fu J, Wang YK, Desai RA, Chen CS (2011) Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity. Nat Protoc 6(2):187–213. doi:10.1038/nprot.2010.189

    Article  CAS  PubMed  Google Scholar 

  180. Yang MT, Sniadecki NJ, Chen CS (2007) Geometric considerations of micro- to nano-scale lastomeric post arrays to study cellular traction forces. Adv Mater 19(20):3119. doi:10.1002/adma.200701956

    Article  CAS  Google Scholar 

  181. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskelet 60(1):24–34. doi:10.1002/cm.20041

    Article  Google Scholar 

  182. Zamir E, Katz M, Posen Y, Erez N, Yamada KM, Katz BZ, Lin S, Lin DC, Bershadsky A, Kam Z, Geiger B (2000) Dynamics and segregation of cell–matrix adhesions in cultured fibroblasts. Nat Cell Biol 2(4):191–196. doi:10.1038/35008607

    Article  CAS  PubMed  Google Scholar 

  183. Zhao Y, Zhang X (2005) Adaptation of flexible polymer fabrication to cellular mechanics study. Appl Phys Lett. doi:10.1063/1.2061861

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to express sincere gratitude to the support from the National Science Foundation of China under Grant No. 51475055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Y., Wang, Z. Review of cellular mechanotransduction on micropost substrates. Med Biol Eng Comput 54, 249–271 (2016). https://doi.org/10.1007/s11517-015-1343-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1343-2

Keywords

Navigation