Medical & Biological Engineering & Computing

, Volume 53, Issue 9, pp 771–780 | Cite as

Continuous-wavelet-transform analysis of the multifocal ERG waveform in glaucoma diagnosis

  • J. M. Miguel-JiménezEmail author
  • R. Blanco
  • L. De-Santiago
  • A. Fernández
  • J. M. Rodríguez-Ascariz
  • R. Barea
  • J. L. Martín-Sánchez
  • C. Amo
  • E. Sánchez-Morla
  • L. Boquete
Original Article


The vast majority of multifocal electroretinogram (mfERG) signal analyses to detect glaucoma study the signals’ amplitudes and latencies. The purpose of this paper is to investigate application of wavelet analysis of mfERG signals in diagnosis of glaucoma. This analysis method applies the continuous wavelet transform (CWT) to the signals, using the real Morlet wavelet. CWT coefficients resulting from the scale of maximum correlation are used as inputs to a neural network, which acts as a classifier. mfERG recordings are taken from the eyes of 47 subjects diagnosed with chronic open-angle glaucoma and from those of 24 healthy subjects. The high sensitivity in the classification (0.894) provides reliable detection of glaucomatous sectors, while the specificity achieved (0.844) reflects accurate detection of healthy sectors. The results obtained in this paper improve on the previous findings reported by the authors using the same visual stimuli and database.


Glaucoma Multifocal ERG Continuous wavelet transform Neural network 



This research has been partially supported by the Ministerio de Ciencia e Innovación (Spain) under the program entitled “Advanced Analysis of Multifocal ERG and Visual-Evoked Potentials Applied to Diagnosis of Optic Neuropathies,” reference number TEC2011–26066, and by FIS PI11/00533 and RETICS RD12/0034/0006 Granted to R. Blanco.

Conflict of interest

The authors claim no conflicts of interest.


  1. 1.
    Addison PS (2005) Wavelet transforms and the ECG: a review. Physiol Meas 26:R155–R199CrossRefPubMedGoogle Scholar
  2. 2.
    Altman DG, Bland JM (1994) Statistics notes: diagnostic tests 2: predictive values. Br Med J 309(102):1Google Scholar
  3. 3.
    Bayer AU, Erb C (2002) Short-wavelength automated perimetry, frequency doubling technology perimetry and pattern electroretinography for prediction of progressive glaucomatous standard visual field defects. Ophthalmology 109:1009–1017CrossRefPubMedGoogle Scholar
  4. 4.
    Bearse MA, Sutter EE, Stamper RL (2001) Detection of glaucomatous dysfunction using a global flash multifocal electroretinogram (mERG) paradigm. In: Sawchuk A (ed) Vision science and its applications. OSA technical digest series, vol 1. Optical Society of America, Washington, DC, pp 14–17Google Scholar
  5. 5.
    Boquete L, Miguel-Jiménez JM, Ortega S, Rodríguez-Ascariz JM, Pérez-Rico C, Blanco R (2011) Multifocal electroretinogram diagnosis of glaucoma applying neural networks and structural pattern analysis. Expert Syst Appl 39:234–238CrossRefGoogle Scholar
  6. 6.
    Chu PH, Chan HH, Brown B (2006) Glaucoma detection is facilitated by luminance modulation of the global flash multifocal electroretinogram. Invest Ophthalmol Vis Sci 47:929–937CrossRefPubMedGoogle Scholar
  7. 7.
    Chu PH, Chan HH, Brown B (2007) Luminance-modulated adaptation of global flash mfERG: fellow eye losses in asymmetric glaucoma. Invest Ophthalmol Vis Sci 48:2626–2633CrossRefPubMedGoogle Scholar
  8. 8.
    Delgado MF, Nguyen NT, Cox TA et al (2002) Automated perimetry: a report by the American Academy of Ophthalmology. Ophthalmology 109:2362–2374CrossRefPubMedGoogle Scholar
  9. 9.
    Delprat N, Escudié B, Guillemain P, Kronland-Martinet R, Tchamitchian P, Torrésani B (1992) Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies. IEEE Trans Inf Theory 38:644–664CrossRefGoogle Scholar
  10. 10.
    Forte JD, Bui BV, Vingrys AJ (2008) Wavelet analysis reveals dynamics of rat oscillatory potentials. J Neurosci Methods 169:191–200CrossRefPubMedGoogle Scholar
  11. 11.
    Fortune B, Bearse MA, Cioffi GA, Johnson CA (2002) Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. Invest Ophthalmol Vis Sci 43:2638–2647PubMedGoogle Scholar
  12. 12.
    Frishman LJ, Saszik S, Harwerth RS et al (2000) Effects of experimental glaucoma in macaques on the multifocal ERG: multifocal ERG in laser-induced glaucoma. Doc Ophthalmol Adv Ophthalmol 100:231–251CrossRefGoogle Scholar
  13. 13.
    Graham SL, Klistorner AI, Grigg JR, Billson FA (2000) Objective VEP perimetry in glaucoma: asymmetry analysis to identify early deficits. J Glaucoma 9:10–19CrossRefPubMedGoogle Scholar
  14. 14.
    Harwerth RS, Crawford ML, Frishman LJ, Viswanathan S, Smith EL, Carter-Dawson L (2002) Visual field defects and neural losses from experimental glaucoma. Prog Retin Eye Res 21:91–125CrossRefPubMedGoogle Scholar
  15. 15.
    Ho WC, Wong OY, Chan YC, Wong SW, Kee CS, Chan HH (2012) Sign-dependent changes in retinal electrical activity with positive and negative defocus in the human eye. Vis Res 52:47–53CrossRefPubMedGoogle Scholar
  16. 16.
    Holder GE (2001) Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20:531–561CrossRefPubMedGoogle Scholar
  17. 17.
    Hood DC, Greenstein VC, Holopigian K et al (2000) An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Invest Ophthalmol Vis Sci 41:1570–1579PubMedGoogle Scholar
  18. 18.
    Hood DC, Odel JG, Chen CS, Winn BJ (2003) The multifocal electroretinogram (ERG): applications and limitations in neuro-ophthalmology. J Neuroophthalmol 23:225–235CrossRefPubMedGoogle Scholar
  19. 19.
    Hood DC, Zhang X (2000) Multifocal ERG and VEP responses and visual fields: comparing disease-related changes. Doc Ophthalmol 100:115–137CrossRefPubMedGoogle Scholar
  20. 20.
    Hori N, Komori S, Yamada H, Sawada A, Nomura Y, Mochizuki K, Yamamoto T (2012) Assessment of macular function of glaucomatous eyes by multifocal electroretinograms. Doc Ophthalmol Adv Ophthalmol 125:235–247CrossRefGoogle Scholar
  21. 21.
    Kook MS, Sung K, Kim S, Park R, Wang W (2001) Study of retinal nerve fiber layer thickness in eyes with high tension glaucoma and hemifield defect. Br J Ophthalmol 85:1167–1170PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Kumar R, Indrayan A (2011) Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatr 48:277–281CrossRefPubMedGoogle Scholar
  23. 23.
    Ledolter AA, Kramer SA, Todorova MG, Schötzau A, Palmowski-Wolf AM (2013) The effect of filtering on the two-global-flash mfERG: identifying the optimal range of frequency for detecting glaucomatous retinal dysfunction. Doc Ophthalmol 126:117–123CrossRefPubMedGoogle Scholar
  24. 24.
    Luo X, Patel NB, Harwerth RS, Frishman LJ (2011) Loss of the low-frequency component of the global-flash multifocal electroretinogram in primate eyes with experimental glaucoma. Invest Ophthalmol Vis Sci 52:3792–3804PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Medeiros FA, Zangwill LM, Bowd C, Weinreb RN (2004) Comparison of the Gdx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol 122:827–837CrossRefPubMedGoogle Scholar
  26. 26.
    Miguel-Jiménez JM, Boquete L, Ortega S, Rodríguez-Ascariz JM, Blanco R (2010) Glaucoma detection by wavelet-based analysis of the global flash multifocal electroretinogram. Med Eng Phys 32:617–622CrossRefPubMedGoogle Scholar
  27. 27.
    Miguel-Jiménez JM, Ortega S, Boquete L, Rodríguez-Ascariz JM, Blanco R (2011) Multifocal ERG wavelet packet decomposition applied to glaucoma diagnosis. Biomed Eng Online 10:37PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Palmowski-Wolfe AM, Todorova MG, Orgül S (2011) Multifocal oscillatory potentials in the ‘two global flash’ mfERG in high and normal tension primary open-angle glaucoma. J Clin Exp Ophthalmol 2:167. doi: 10.4172/2155-9570.1000167 CrossRefGoogle Scholar
  29. 29.
    Rangaswamy NV, Hood DC, Frishman LJ (2003) Regional variations in local contributions to the primate photopic flash ERG: revealed using the slow-sequence mfERG. Invest Ophthalmol Vis Sci 44:3233–3247CrossRefPubMedGoogle Scholar
  30. 30.
    Sainani K (2010) The importance of accounting for correlated observations. PM & R J Inj Funct Rehabil 2(9):858–861. doi: 10.1016/j.pmrj.2010.07.482 CrossRefGoogle Scholar
  31. 31.
    Shimada Y, Li Y, Bearse MA, Sutter EE, Fung W (2001) Assessment of early retinal changes in diabetes using a new multifocal ERG protocol. Br J Ophthalmol 85:414–419PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Sutter EE, Tran D (1992) The field topography of ERG components in man. I. The photopic luminance response. Vis Res 32:433–446CrossRefPubMedGoogle Scholar
  33. 33.
    Sutter EE, Bearse MA (1999) The optic nerve head component of the human ERG. Vis Res 39:419–436CrossRefPubMedGoogle Scholar
  34. 34.
    Todorova MG, Palmowski-Wolfe AM (2011) MfERG responses to long-duration white stimuli in glaucoma patients. Doc Ophthalmol Adv Ophthalmol 122:87–97CrossRefGoogle Scholar
  35. 35.
    Wu LL, Suzuki Y, Kunimatsu S, Araie M, Iwase A, Tomita G (2001) Frequency doubling technology and confocal scanning ophthalmoscopic optic disc analysis in open-angle glaucoma with hemifield defect. J Glaucoma 10:256–260CrossRefPubMedGoogle Scholar
  36. 36.
    Wu Y, Wang H, Zhang B, Du KL (2012) Using radial basis function networks for function approximation and classification. ISRN Appl Math 2012:324194. doi: 10.5402/2012/324194 CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2015

Authors and Affiliations

  • J. M. Miguel-Jiménez
    • 1
    Email author
  • R. Blanco
    • 1
  • L. De-Santiago
    • 1
  • A. Fernández
    • 1
  • J. M. Rodríguez-Ascariz
    • 1
  • R. Barea
    • 1
  • J. L. Martín-Sánchez
    • 1
  • C. Amo
    • 1
  • E. Sánchez-Morla
    • 1
  • L. Boquete
    • 1
  1. 1.Department of ElectronicsUniversity of AlcaláAlcalá de HenaresSpain

Personalised recommendations