Medical & Biological Engineering & Computing

, Volume 52, Issue 10, pp 813–826 | Cite as

Patient-specific generation of the Purkinje network driven by clinical measurements of a normal propagation

  • Christian VergaraEmail author
  • Simone Palamara
  • Domenico Catanzariti
  • Fabio Nobile
  • Elena Faggiano
  • Cesarino Pangrazzi
  • Maurizio Centonze
  • Massimiliano Maines
  • Alfio Quarteroni
  • Giuseppe Vergara
Original Article


The propagation of the electrical signal in the Purkinje network is the starting point for the activation of the ventricular muscular cells leading to the contraction of the ventricle. In the computational models, describing the electrical activity of the ventricle is therefore important to account for the Purkinje fibers. Until now, the inclusion of such fibers has been obtained either by using surrogates such as space-dependent conduction properties or by generating a network based on an a priori anatomical knowledge. The aim of this work was to propose a new method for the generation of the Purkinje network using clinical measures of the activation times on the endocardium related to a normal electrical propagation, allowing to generate a patient-specific network. The measures were acquired by means of the EnSite NavX system. This system allows to measure for each point of the ventricular endocardium the time at which the activation front, that spreads through the ventricle, has reached the subjacent muscle. We compared the accuracy of the proposed method with the one of other strategies proposed so far in the literature for three subjects with a normal electrical propagation. The results showed that with our method we were able to reduce the absolute errors, intended as the difference between the measured and the computed data, by a factor in the range 9–25 %, with respect to the best of the other strategies. This highlighted the reliability of the proposed method and the importance of including a patient-specific Purkinje network in computational models.


Purkinje fibers Computational methods Activation times Eikonal equation EnSite NavX system 



Purkinje fibers


Cardiac conduction system


Purkinje muscular junctions


Magnetic resonance imaging


Three dimensional







The present study has been funded by Fondazione Cassa di Risparmio di Trento e Rovereto (CARITRO) within the project “Numerical modelling of the electrical activity of the heart for the study of the ventricular dyssynchrony”. The authors would like also to acknowledge St. Jude Medical Inc. and in particular Eng Indiani for their helpful assistance for the description of the technical characteristics of the NavX system.

Conflict of interest

We state that there are no disclosures.


  1. 1.
    Abboud S, Berenfeld O, Sadeh D (1991) Simulation of high-resolution QRS complex using a ventricular model with a fractal conduction system. Effects of ischemia on high-frequency QRS potentials. Circ Res 68(6):1751–1760PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson RH, Yanni J, Boyett MR, Chandler NJ, Dobrzynski H (2009) The anatomy of the cardiac conduction system. Clin Anat 22(1):99–113PubMedCrossRefGoogle Scholar
  3. 3.
    Berenfeld O, Jalife J (1998) Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circ Res 82(10):1063–1077PubMedCrossRefGoogle Scholar
  4. 4.
    Bhakta D, Miller JM (2008) Principles of electroanatomic mapping. Indian Pacing Electrophysiol J 8(1):32–50PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bordas R, Gillow K, Lou Q, Efimov IR, Gavaghan D, Kohl P, Grau V, Rodriguez B (2011) Rabbit-specific ventricular model of cardiac electrophysiological function including specialized conduction system. Prog Biophys Mol Biol 107(1):90–100PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Colli Franzone P, Guerri L (1993) Spreading excitation in 3-D models of the anisotropic cardiac tissue, I. Validation of the Eikonal model. Math Biosci 113:145–209CrossRefGoogle Scholar
  7. 7.
    Colli Franzone P, Guerri L, Pennacchio M, Taccardi B (1998) Spread of excitation in 3-d models of the anisotropic cardiac tissue. II. Effects of fiber architecture and ventricular geometry. Math Biosci 147(2):131–171CrossRefGoogle Scholar
  8. 8.
    Colli Franzone P, Pavarino LF (2004) A parallel solver for reaction–diffusion systems in computational electrocardiology. Math Models Methods Appl 14(06):883–911CrossRefGoogle Scholar
  9. 9.
    Durrer D, van Dam RR, Freud GE, Janse MJ, Meijler FL, Arzbaecher RC (1970) Total excitation of the isolated human heart. Circulation 41(6):899–912PubMedCrossRefGoogle Scholar
  10. 10.
    Eitel C, Hindricks G, Dagres N, Sommer P, Piorkowski C (2010) EnSite Velocity™ cardiac mapping system: a new platform for 3D mapping of cardiac arrhythmias. Expert Rev Med Devices 7(2):185–192PubMedCrossRefGoogle Scholar
  11. 11.
    Ijiri T, Ashihara T, Yamaguchi T, Takayama K, Igarashi T, Shimada T, Namba T, Haraguchi R, Nakazawa K (2008) A procedural method for modeling the Purkinje fibers of the heart. J Physiol Sci 58(7):481–486PubMedCrossRefGoogle Scholar
  12. 12.
    Keener JP (1991) An Eikonal-curvature equation for action potential propagation in myocardium. J Math Biol 29(7):629–651PubMedCrossRefGoogle Scholar
  13. 13.
    Keener JP, Sneyd J (1998) Mathematical Physiology. Springer, New YorkGoogle Scholar
  14. 14.
    Keener JP, Bogar K (1998) A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos 8(1):234–241PubMedCrossRefGoogle Scholar
  15. 15.
    Kerckhoffs RC, Faris OP, Bovendeerd PH, Prinzen FW, Smits K, Arts T (2003) Timing of depolarization and contraction in the paced canine left ventricle: model and experiment. J Cardiovasc Electr 14(10 Suppl):S188–S195CrossRefGoogle Scholar
  16. 16.
    Palamara S, Vergara C, Catanzariti D, Faggiano E, Centonze M, Pangrazzi C, Maines M, Quarteroni A (2014) Patient-specific generation of the Purkinje network driven by clinical measurements: the case of pathological propagations. MOX Report n. 4/2014Google Scholar
  17. 17.
    Palamara S, Vergara C, Faggiano E, Nobile F (2013) An effective algorithm for the generation of patient-specific Purkinje networks in computational electrocardiology. MOX Report n. 48/2013Google Scholar
  18. 18.
    Pashaei A, Romero D, Sebastian R, Camara O, Frangi A (2011) Fast multiscale modeling of cardiac electrophysiology including purkinje system. IEEE T Biomed Eng 58(10):2956–2960CrossRefGoogle Scholar
  19. 19.
    Rawling DA, Joyner RW, Overholt ED (1985) Variations in the functional electrical coupling between the subendocardial purkinje and ventricular layers of the canine left ventricle. Circ Res 57(2):252–261PubMedCrossRefGoogle Scholar
  20. 20.
    Rodriguez B, Li L, Eason JC, Efimov IR, Trayanova NA (2005) Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks. Circ Res 97(2):168–175PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Romero D, Sebastian R, Bijnens B, Zimmerman V, Boyle P, Vigmond E, Frangi A (2010) Effects of the Purkinje system and cardiac geometry on biventricular pacing: a model study. Ann Biomed Eng 38:1388–1398PubMedCrossRefGoogle Scholar
  22. 22.
    Rotter M, Takahashi Y, Sanders P, Haïssaguerre M, Jaïs P, Hsu LF, Sacher F, Pasquié JL, Clementy J, Hocini M (2005) Reduction of fluoroscopy exposure and procedure duration during ablation of atrial fibrillation using a novel anatomical navigation system. Eur Heart J 26(14):1415–1421PubMedCrossRefGoogle Scholar
  23. 23.
    Sebastian R, Zimmerman V, Romero D, Frangi A (2011) Construction of a computational anatomical model of the peripheral cardiac conduction system. IEEE T Biomed Eng 58(12):3479–3482CrossRefGoogle Scholar
  24. 24.
    Sebastian R, Zimmerman V, Romero D, Sanchez-Quintana D, Frangi A (2012) Characterization and modeling of the peripheral cardiac conduction system. IEEE T Med Imaging 32(1):45–55CrossRefGoogle Scholar
  25. 25.
    Sermesant M, Chabiniok R, Chinchapatnam P, Mansi T, Billet F, Moireau P, Peyrat JM, Wong K, Relan J, Rhode K, Ginks M, Lambiase P, Delingette H, Sorine M, Rinaldi CA, Chapelle D, Razavi R, Ayache N (2012) Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med Image Anal 16(1):201–215PubMedCrossRefGoogle Scholar
  26. 26.
    Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, CambridgeGoogle Scholar
  27. 27.
    Taccardi B, Lux RL, Ershler PR, MacLeod R, Dustman TJ, Ingebrigtsen N (1997) Anatomical architecture and electrical activity of the heart. Acta Cardiol 52(2):91–105PubMedGoogle Scholar
  28. 28.
    Tobon-Gomez C, Duchateau N, Sebastian R, Marchesseau S, Camara O, Donal E, De Craene M, Pashaei A, Relan J, Steghofer M, Lamata P, Delingette H, Duckett S, Garreau M, Hernandez A, Rhode KS, Sermesant M, Ayache N, Leclercq C, Razavi R, Smith NP, Frangi AF (2013) Understanding the mechanisms amenable to CRT response: from pre-operative multimodal image data to patient-specific computational models. Med Biol Eng Comput. doi: 10.1007/s11517-013-1044-7 Google Scholar
  29. 29.
    Tusscher KH, Panfilov AV (2008) Modelling of the ventricular conduction system. Prog Biophys Mol Biol 96(1–3):152–170PubMedCrossRefGoogle Scholar
  30. 30.
    Vigmond EJ, Aguel F, Trayanova NA (2002) Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans Biomed Eng 49(11):1260–1269PubMedCrossRefGoogle Scholar
  31. 31.
    Wittkampf FH, Wever EF, Derksen R, Wilde AAM, Ramanna H, Hauer RNW, Robles de Medina EO (1999) LocaLisa: new technique for real-time 3-dimensional localization of regular intracardiac electrodes. Circulation 99(10):1312–1317PubMedCrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2014

Authors and Affiliations

  • Christian Vergara
    • 1
    Email author
  • Simone Palamara
    • 2
  • Domenico Catanzariti
    • 3
  • Fabio Nobile
    • 2
    • 4
  • Elena Faggiano
    • 2
    • 5
  • Cesarino Pangrazzi
    • 3
  • Maurizio Centonze
    • 6
  • Massimiliano Maines
    • 3
  • Alfio Quarteroni
    • 2
    • 4
  • Giuseppe Vergara
    • 3
  1. 1.Dipartimento di IngegneriaUniversità di BergamoDalmineItaly
  2. 2.MOX, Dipartimento di MatematicaPolitecnico di MilanoMilanItaly
  3. 3.Divisione di CardiologiaOspedale S. Maria del CarmineRoveretoItaly
  4. 4.MATHICSE-CSQIÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  5. 5.LaBS, Dipartimento di Chimica, Materiali e Ingegneria ChimicaPolitecnico di MilanoMilanItaly
  6. 6.U.O. di Radiologia di Borgo-PergineBorgo ValsuganaItaly

Personalised recommendations