Skip to main content

Advertisement

Log in

Automatic detection of the intima-media thickness in ultrasound images of the common carotid artery using neural networks

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Atherosclerosis is the leading underlying pathologic process that results in cardiovascular diseases, which represents the main cause of death and disability in the world. The atherosclerotic process is a complex degenerative condition mainly affecting the medium- and large-size arteries, which begins in childhood and may remain unnoticed during decades. The intima-media thickness (IMT) of the common carotid artery (CCA) has emerged as one of the most powerful tool for the evaluation of preclinical atherosclerosis. IMT is measured by means of B-mode ultrasound images, which is a non-invasive and relatively low-cost technique. This paper proposes an effective image segmentation method for the IMT measurement in an automatic way. With this purpose, segmentation is posed as a pattern recognition problem, and a combination of artificial neural networks has been trained to solve this task. In particular, multi-layer perceptrons trained under the scaled conjugate gradient algorithm have been used. The suggested approach is tested on a set of 60 longitudinal ultrasound images of the CCA by comparing the automatic segmentation with four manual tracings. Moreover, the intra- and inter-observer errors have also been assessed. Despite of the simplicity of our approach, several quantitative statistical evaluations have shown its accuracy and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bastida-Jumilla MC, Menchón-Lara RM, Morales-Sánchez J, Verdú-Monedero R, Larrey-Ruiz J, Sancho-Gómez JL (2013) Segmentation of the common carotid artery walls based on a frequency implementation of active contours. J Digit Imaging 26(1):129–139

    Article  PubMed  Google Scholar 

  2. Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin

    Google Scholar 

  3. Bots M, Evans GW, Riley W, Grobbee D (2003) Carotid intima-media thickness measurements in intervention studies: design options, progression rates, and sample size considerations: a point of view. Stroke 34(12):2985–2994

    Article  PubMed  Google Scholar 

  4. Ceccarelli M, De Luca N, Morganella A (2006) An active contour approach to automatic detection of the intima-media thickness. In: 2006 IEEE international conference on acoustics, speech and signal processing. ICASSP 2006 proceedings, vol 5, pp 709–712

  5. Chan RC, Kaufhold J, Hemphill LC, Lees RS, Karl WC (2000) Anisotropic edge-preserving smoothing in carotid B-mode ultrasound for improved segmentation and intima-media thickness (IMT) measurement. In: Computers in cardiology 2000, IEEE, pp 37–40. doi: 10.1109/CIC.2000.898449. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=898449&isnumber=19426

  6. Cheng DC, Jiang X (2008) Detections of arterial wall in sonographic artery images using dual dynamic programming. IEEE Trans Inf Technol Biomed 12(6):792–799

    Article  Google Scholar 

  7. Cheng DC, Schmidt-Trucksass A, Cheng KS, Burkhardt H (2002) Using snakes to detect the intimal and adventitial layers of the common carotid artery wall in sonographic images. Comput Methods Programs Biomed 67(1):27–37

    Article  Google Scholar 

  8. Delsanto S, Molinari F, Giusetto P, Liboni W, Badalamenti S, Suri J (2007) Characterization of a completely user-independent algorithm for carotid artery segmentation in 2-d ultrasound images. IEEE Trans Instrum Meas 56(4):1265–1274

    Article  Google Scholar 

  9. Destrempes F, Meunier J, Giroux MF, Soulez G, Cloutier G (2009) Segmentation in ultrasonic b-mode images of healthy carotid arteries using mixtures of nakagami distributions and stochastic optimization. IEEE Trans Med Imaging 28(2):215–229

    Article  Google Scholar 

  10. Faita F, Gemignani V, Bianchini E, Giannarelli C, Ghiadoni L, Demi M (2008) Real-time measurement system for evaluation of the carotid intima-media thickness with a robust edge operator. J Ultrasound Med 27(9):1353–1361

    PubMed  Google Scholar 

  11. Giacinto G, Roli F (2001) Desing of effective neural network ensembles for image classification purposes. Image Vis Comput 19(9-10):699–707

    Article  Google Scholar 

  12. Golemati S, Stoitsis J, Sifakis EG, Balkizas T, Nikita KS (2007) Using of the hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery. Ultrasound Med Biol 33(12):1918–1932

    Article  Google Scholar 

  13. Gonzalez J, Wood J, Dorey FJ, Wren TAL, Gilsanz V (2008) Reproducibility of carotid intima-media thickness measurements in young adults. Radiology 247(2):465–471

    Article  PubMed  Google Scholar 

  14. González RC, Woods RE, Eddins SL (2004) Digital image processing using Matlab. Pentice Hall, Upper Saddle River, NJ

    Google Scholar 

  15. Gustavsson T, Liang Q, Wendelhag I, Wikstrand J (1994) A dynamic programming procedure for automated ultrasonic measurement of the carotid artery. In: Computers in cardiology 1994, IEEE, 25–28 Sept 1994, pp 297–300. doi:10.1109/CIC.1994.470190. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=470190&isnumber=9921

  16. Gutierrez MA, Pilon PE, Lage SG, Kopel L, Carvalho RT, Furuie SS (2002) Automatic measurement of carotid diameter and wall thickness in ultrasound images. In: Computers in cardiology 2002, IEEE, 22–25 Sept 2002, pp 359–362. doi: 10.1109/CIC.2002.1166783. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1166783&isnumber=26305

  17. Huang Y, Suen C (1995) A method of combining multiple experts for the recognition of unconstrained handwritten numerals. IEEE Trans Pattern Anal Mach Intell 17(1):90–94

    Article  Google Scholar 

  18. Ilea D, Whelan P, Brown C, Stanton A (2009) An automatic 2d cad algorithm for the segmentation of the imt in ultrasound carotid artery images. In: Engineering in medicine and biology society, 2009. EMBC 2009. Annual international conference of the IEEE, pp 515–519

  19. Lee YB, Choi YJ, Kim MH (2010) Boundary detection in carotid ultrasound images using dynamic programming and a directional haar-like filter. Comput Biol Med 40(8):687–697

    Article  PubMed  Google Scholar 

  20. Liang Q, Wendelhag I, Wikstrand J, Gustavsson T (2000) A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images. IEEE Trans Med Imaging 19(2):127–142

    Article  CAS  Google Scholar 

  21. Liguori C, Paolillo A, Pietrosanto A (2001) An automatic measurement system for the evaluation of carotid intima-media thicknesss. IEEE Trans Instrum Meas 50(6):1684–1691

    Article  Google Scholar 

  22. Liu G, Wang B, Liu D (2008) Detection of intima-media layer of common carotid artery with dynamic programming based active contour model. In: Pattern recognition, 2008. CCPR ’08. Chinese Conference on, pp 1–6

  23. Loizou C, Pantziaris M, Pattichis M, Kyriacou E, Pattichis C (2009) Ultrasound image texture analysis of the intima and media layers of the common carotid artery and its correlation with age and gender. Comput Med Imaging Graph 33(4):317–324

    Article  CAS  PubMed  Google Scholar 

  24. Loizou CP, Pattichis CS, Pantziaris M, Tyllis T, Nicolaides A (2007) Snakes based segmentation of the common carotid artery intima media. Med Biol Eng Comput 45(1):35–49

    Article  CAS  PubMed  Google Scholar 

  25. Meyer F (1994) Topographic distance and watershed lines. Signal Process 38(1):113–125

    Article  Google Scholar 

  26. Meyer-Base A (2004) Pattern recognition for medical imaging. Academic Press, London

    Google Scholar 

  27. Molinari F, Meiburger KM, Saba L, Acharya UR, Ledda M, Nicolaides A, Suri JS (2012) Constrained snake versus conventional snake for carotid ultrasound automated imt measurements on multi-center data sets. Ultrasonics 52(7):949–961

    Article  PubMed  Google Scholar 

  28. Molinari F, Zeng G, Suri J (2010) Intima-media thickness: setting a standard for a completely automated method of ultrasound measurement. IEEE Trans Ultrasonics Ferroelectr Freq Control 57(5):1112–1124

    Article  Google Scholar 

  29. Molinari F, Zeng G, Suri JS (2010) Review: a state of the art review on intima-media thickness (imt) measurement and wall segmentation techniques for carotid ultrasound. Comput Methods Prog Biomed 100(3):201–221

    Article  Google Scholar 

  30. Moller M (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6:525–533

    Article  Google Scholar 

  31. Moré JJ (1978) The levenberg-marquardt algorithm: Implementation and theory. In: Watson G (ed.) Numerical analysis, lecture notes in mathematics, vol 630. Springer, Berlin, pp 105–116

  32. Organization WH Global atlas on cardiovascular disease prevention and control. online.http://www.who.int/cardiovascular_diseases/en/

  33. Pham D, Xu C, Prince J (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2:315–337

    Article  CAS  PubMed  Google Scholar 

  34. Rocha R, Campilho A, Silva J, Azevedo E, Santos R (2010) Segmentation of the carotid intima-media region in b-mode ultrasound images. Image Vis Comput 28(4):614–625

    Article  Google Scholar 

  35. Santhiyakumari N, Madheswaran M (2008) Non-invasive evaluation of carotid artery wall thickness using improved dynamic programming technique. Signal Image Video Process 2(2):183–193

    Article  Google Scholar 

  36. Selzer RH, Mack WJ, Lee PL, Kwong-Fu H, Hodis HN (2001) Improved common carotid elasticity and intima-media thickness measurements from computer analysis of sequential ultrasound frames. Atherosclerosis 154(1):185–193

    Article  CAS  PubMed  Google Scholar 

  37. Sheehan FH, Stewart DK, Dodge HT, Mitten S, Bolson EL, Brown BG (1983) Variability in the measurement of regional left ventricular wall motion from contrast angiograms. Circulation 68(3):550–559

    Article  CAS  PubMed  Google Scholar 

  38. Stein JH, Korcarz CE, Mays ME, Douglas PS, Palta M, Zhang H, LeCaire T, Paine D, Gustafson D, Fan L (2005) A semiautomated ultrasound border detection program that facilitates clinical measurement of ultrasound carotid intima-media thickness. J Am Soc Echocardiogr 18(3):244–251

    Article  PubMed  Google Scholar 

  39. Suri JS, Haralick RM, Sheehan FH (2000) Greedy algorithm for error correction in automatically produced boundaries from low contrast ventriculograms. Pattern Anal Appl 3(1):39–60

    Article  Google Scholar 

  40. Touboul PJ, Hennerici M, Meairs S, Adams H, Amarenco P, Bornstein N, Csiba L, Desvarieux M, Ebrahim S, Hernandez Hernandez R, Jaff M, Kownator S, Naqvi T, Prati P, Rundek T, Sitzer M, Schminke U, Tardif JC, Taylor A, Vicaut E, Woo K (2012) Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). Cerebrovasc Dis 34:290–296

    Article  PubMed  PubMed Central  Google Scholar 

  41. Velázquez F, Berná JD, Abellán JL, Serrano L, Escribano A, Canteras M (2008) Reproducibility of sonographic measurements of carotid intima-media thickness. Acta Radiologica 49(10):1162–1166

    Article  PubMed  Google Scholar 

  42. Wendelhag I, Liang Q, Gustavsson T, Wikstrand J (1997) A new automated computerized analysis system simplifies readings and reduces the variability in ultrasound measurement of intima-media thickness. Stroke 28:2195–2200

    Article  CAS  PubMed  Google Scholar 

  43. Xu X, Zhou Y, Cheng X, Song E, Li G (2012) Ultrasound intima-media segmentation using hough transform and dual snake model. Comput Med Imaging Graph 36(3):248–258

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Spanish Ministerio de Ciencia e Innovación, under Grant TEC2009-12675. The images used and the anatomical knowledge have been provided by the radiology department of Hospital Universitario Virgen de la Arrixaca, Murcia, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa-María Menchón-Lara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menchón-Lara, RM., Bastida-Jumilla, MC., Morales-Sánchez, J. et al. Automatic detection of the intima-media thickness in ultrasound images of the common carotid artery using neural networks. Med Biol Eng Comput 52, 169–181 (2014). https://doi.org/10.1007/s11517-013-1128-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1128-4

Keywords

Navigation