Medical & Biological Engineering & Computing

, Volume 51, Issue 11, pp 1209–1219 | Cite as

Generating anatomical models of the heart and the aorta from medical images for personalized physiological simulations

  • J. Weese
  • A. Groth
  • H. Nickisch
  • H. Barschdorf
  • F. M. Weber
  • J. Velut
  • M. Castro
  • C. Toumoulin
  • J. L. Coatrieux
  • M. De Craene
  • G. Piella
  • C. Tobón-Gomez
  • A. F. Frangi
  • D. C. Barber
  • I. Valverde
  • Y. Shi
  • C. Staicu
  • A. Brown
  • P. Beerbaum
  • D. R. Hose
Special Issue - Review

Abstract

The anatomy and motion of the heart and the aorta are essential for patient-specific simulations of cardiac electrophysiology, wall mechanics and hemodynamics. Within the European integrated project euHeart, algorithms have been developed that allow to efficiently generate patient-specific anatomical models from medical images from multiple imaging modalities. These models, for instance, account for myocardial deformation, cardiac wall motion, and patient-specific tissue information like myocardial scar location. Furthermore, integration of algorithms for anatomy extraction and physiological simulations has been brought forward. Physiological simulations are linked closer to anatomical models by encoding tissue properties, like the muscle fibers, into segmentation meshes. Biophysical constraints are also utilized in combination with image analysis to assess tissue properties. Both examples show directions of how physiological simulations could provide new challenges and stimuli for image analysis research in the future.

Keywords

Physiological simulation Patient-specific anatomical model Heart and aorta segmentation Coronary veins Heart motion Wall mechanics Pressure wave Tissue properties 

References

  1. 1.
    Aguado-Sierra J, Krishnamurthy A, Villongco C, Chuang J, Howard E, Gonzales M, Omens J, Krummen D, Narayan S, Kerckhoffs R et al (2011) Patient-specific modeling of dyssynchronous heart failure: a case study. Prog Biophys Mol Biol 107(1):147–155PubMedCrossRefGoogle Scholar
  2. 2.
    Angelini E, Gerard O (2006) Review of myocardial motion estimation methods from optical flow tracking on ultrasound data. Engineering in medicine and biology society, pp 1537–1540Google Scholar
  3. 3.
    Avolio A, Westerhof BE, Siebes M, Tyberg JV (2009) Arterial hemodynamics and wave analysis in the frequency and time domains: an evaluation of the paradigms. Med Biol Eng Comput 47(2):107–110PubMedCrossRefGoogle Scholar
  4. 4.
    Barber DC, Hose DR (2005) Automatic segmentation of medical images using image registration diagnostic and simulation applications. J Med Eng Technol 29(2):53–63PubMedCrossRefGoogle Scholar
  5. 5.
    Barber DC, Oubel E, Frangi AF, Hose DR (2007) Efficient computational fluid dynamics mesh generation by image registration. Med Image Anal 11(6):648–662PubMedCrossRefGoogle Scholar
  6. 6.
    Barber DC, Shi Y, Staicu C, Berrbaum P, Valverde I, Baginska J, Rutten MCM, Gaddum N, Hose DR (2011) Measurement of aortic pressure wave velocity by 4D image registration. In: Medical image understanding and analysisGoogle Scholar
  7. 7.
    Beg M, Miller M, Trouvé A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vis 61(2):139–157CrossRefGoogle Scholar
  8. 8.
    Bertoglio C, Moireau P, Gerbeau J (2012) Sequential parameter estimation for fluid–structure problems: application to hemodynamics. Int J Numer Methods Biomed Eng 28(4):434–455CrossRefGoogle Scholar
  9. 9.
    Biesdorf A, Wörz S, Müller T, Weber TF, Heye T, Hosch W, von Tengg-Kobligk H, Rohr K (2011) Model-based segmentation and motion analysis of the thoracic aorta from 4D ECG-gated CTA images. Lecture Notes in Computer Science (MICCAI) 6891:589–596Google Scholar
  10. 10.
    Bousse A, Boldak C, Toumoulin C, Yang G, Laguitton S, Boulmier D (2006) Coronary extraction and characterization in multi-detector computed tomography. ITBM-RBM 27(5-6):217–226Google Scholar
  11. 11.
    Chabiniok R, Moireau P, Lesault PF, Rahmouni A, Deux JF, Chapelle D (2001) Trials on tissue contractility estimation from cardiac cine MRI using a biomechanical heart model. Lecture Notes in Computer Science (FIMH) 6666:304–312Google Scholar
  12. 12.
    Christie GR, Nielsen PM, Blackett SA, Bradley CP, Hunter PJ (2009) FieldML: concepts and implementation. Philos Trans R Soc A 367(1895):1869–1884CrossRefGoogle Scholar
  13. 13.
    Daubert J, Ritter P, Le Breton H, Gras D, Leclercq CAL, Mugica J, Mabo P, Cazeau S (1998) Permanent left ventricular pacing with transvenous leads inserted into the coronary veins. PACE 21:239–245PubMedCrossRefGoogle Scholar
  14. 14.
    De Craene M, Piella G, Camara O, Duchateau N, Silva E, Doltra A, D’hooge J, Brugada J, Sitges M, Frangi AF (2012) Temporal diffeomorphic free-form deformation: application to motion and strain estimation from 3d echocardiography. Med Image Anal 16(2):427–450PubMedCrossRefGoogle Scholar
  15. 15.
    De Craene M, Tobón-Gomez C, Butakoff C, Duchateau N, Piella G, Rhode KS, Frangi AF (2011) Temporal diffeomorphic free form deformation (TDFFD) applied to motion and deformation quantification of tagged mri sequences. Lecture Notes in Computer Science (STACOM) 7085:68–77Google Scholar
  16. 16.
    Dössel O, Krueger MW, Weber FM, Wilhelms M, Seemann G (2012) Computational modeling of the human atrial anatomy and electrophysiology. Med Biol Eng Comput 50(8):773–799PubMedCrossRefGoogle Scholar
  17. 17.
    Duchateau N, De Craene M, Piella G, Silva E, Doltra A, Sitges M, Bijnens B, Frangi A (2011) A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities. Med Image Anal 15(3):316–328Google Scholar
  18. 18.
    Ecabert O, Peters J, Schramm H, Lorenz C, von Berg J, Walker MJ, Vembar M, Olszewski ME, Subramanyan K, Lavi G, Weese J (2008) Automatic model-based segmentation of the heart in CT images. IEEE Trans Med Imag 27(9):1189–1201CrossRefGoogle Scholar
  19. 19.
    Ecabert O, Peters J, Walker MJ, Ivanc T, Lorenz C, von Berg J, Lessick J, Vembar M, Weese J (2011) Segmentation of the heart and great vessels in CT images using a model-based adaptation framework. Med Image Anal 15(6):863–876PubMedCrossRefGoogle Scholar
  20. 20.
    Eisner J (1997) State-of-the-art algorithms for minimum spanning trees: a tutorial discussion. University of PennsylvaniaGoogle Scholar
  21. 21.
    Elen A, Choi H, Loeckx D, Gao H, Claus P, Suetens P, Maes F, D’hooge J (2008) Three-dimensional cardiac strain estimation using spatio-temporal elastic registration of ultrasound images: a feasibility study. IEEE Trans Med Imag 27(11):1580–1591CrossRefGoogle Scholar
  22. 22.
    euHeart consortium: http://www.euheart.eu/
  23. 23.
    Ferrant M, Nabavi A, Macq B, Jolesz FA, Kikinis R, Warfield SK (2001) Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans Med Imag 20(12):1384–1397CrossRefGoogle Scholar
  24. 24.
    Groth A, Weese J, Lehmann H (2012) Robust left ventricular myocardium segmentation for multi-protocol MR. SPIE Med Imaging 8314:83142S1–83142S9Google Scholar
  25. 25.
    Hernández Hoyos M, Orkisz M, Roux J, Douek P (1999) Inertia-based vessel axis extraction and stenosis quantification in 3D MRA images. In: Computer assisted radiology and surgery (CARS), pp 189–193Google Scholar
  26. 26.
    Ho SY, Sanchez-Quintana D (2008) The importance of atrial structure and fibers. Clin Anat 22:52–63CrossRefGoogle Scholar
  27. 27.
    Joldes GR, Wittek A, Warfield SK, Miller K (2012) Performing brain image warping using the deformation field predicted by a biomechanical model. Comput Biomech Med 1:89–96CrossRefGoogle Scholar
  28. 28.
    Kaus MR, von Berg J, Weese J, Niessen W, Pekar V (2004) Automated segmentation of the left ventricle in cardiac MRI. Med Image Anal 8(3):245–254PubMedCrossRefGoogle Scholar
  29. 29.
    Khan A, Beg M (2008) Representation of time-varying shapes in the large deformation diffeomorphic framework. In: Biomedical imaging: from nano to macro (ISBI), pp 1521–1524Google Scholar
  30. 30.
    Krueger MW, Schmidt V, Tobón C, Weber FM, Lorenz C, Keller DUJ, Barschdorf H, Burdumy M, Neher P, Plank G, Rhode KS, Seemann G, Sánchez-Quintana D, Saiz J, Razavi R, Dössel O (2011) Modeling atrial fiber orientation in patient-specific geometries: a semi-automatic rule-based approach. Lecture Notes in Computer Science (FIMH) 6666:223–232Google Scholar
  31. 31.
    Lamata P, Niederer S, Nordsletten D, Barber DC, Roy I, Hose DR, Smith N (2011) An accurate, fast and robust method to generate patient-specific cubic Hermite meshes. Med Image Anal 15(6):801–813PubMedCrossRefGoogle Scholar
  32. 32.
    Ledesma-Carbayo M, Kybic J, Desco M, Santos A, Suhling M, Hunziker P, Unser M (2005) Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation.. IEEE Trans Med Imag 24(9):1113–1126CrossRefGoogle Scholar
  33. 33.
    Lehmann H, Kneser R, Neizel M, Peters J, Ecabert O, Kühl H, Kelm M, Weese J (2008) Integrating viability information into a cardiac model for interventional guidance. Lecture Notes in Computer Science (FIMH) 5528:312–320Google Scholar
  34. 34.
    Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 13(6):819–845PubMedCrossRefGoogle Scholar
  35. 35.
    Lorenz C, Berg J (2006) A comprehensive shape model of the heart. Med Image Anal 10(4):657–670PubMedCrossRefGoogle Scholar
  36. 36.
    Lorigo LM, Faugeras OD, Grimson WEL, Keriven R, Kikinis R, Nabavi A, Westin CF (2001) Curves: curve evolution for vessel segmentation. Med Image Anal 5:195–206PubMedCrossRefGoogle Scholar
  37. 37.
    Metz C, Klein S, Schaap M, Van Walsum T, Niessen W (2011) Nonrigid registration of dynamic medical imaging data using n-d+t b-splines and a groupwise optimization approach. Med Image Anal 15(2):238–249PubMedCrossRefGoogle Scholar
  38. 38.
    Nacken P, Toet A, Vincent L (1992) Graph morphology. J Vis Commun Image Represent 3(1):24–38CrossRefGoogle Scholar
  39. 39.
    Neher P, Barschdorf H, Dries S, Weber FM, Krueger MW, Dössel O, Lorenz C (2011) Automatic segmentation of cardiac CTs—personalized atrial models augmented with electrophysiological structures. Lecture Notes in Computer Science (FIMH) 6666:80–87Google Scholar
  40. 40.
    Nickisch H, Barschdorf H, Weber FM, Krueger MW, Dössel O, Weese J (2012) From image to personalized cardiac simulation: encoding anatomical structures into a model-based segmentation framework. Lecture Notes in Computer Science (STACOM) (accepted)Google Scholar
  41. 41.
    Oubel E, De Craene M, Hero AO, Pourmorteza A, Huguet M, Avegliano G, Bijnens BH, Frangi AF (2012) Cardiac motion estimation by joint alignment of tagged mri sequences. Med Image Anal 16(1):339–350Google Scholar
  42. 42.
    Peters J, Ecabert O, Meyer C, Schramm H, Kneser R, Groth A, Weese J (2007) Automatic whole heart segmentation in static magnetic resonance image volumes. Lecture Notes in Computer Science (MICCAI) 4792:402–410Google Scholar
  43. 43.
    Peyrat JM, Sermesant M, Pennec X, Delingette H, Xu C, McVeigh ER, Ayache N (2007) A computational framework for the statistical analysis of cardiac diffusion tensors: application to a small database of canine hearts. IEEE Trans Med Imag 26(10):1–15CrossRefGoogle Scholar
  44. 44.
    Piella G, De Craene M, Yao C, Penney GP, Frangi AF (2011) Multiview diffeomorphic registration for motion and strain estimation from 3D ultrasound sequences. Lecture Notes in Computer Science (FIMH) 6666:375–383Google Scholar
  45. 45.
    Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, Gerig G, Kikinis R (1998) Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal 2(2):143–168PubMedCrossRefGoogle Scholar
  46. 46.
    Sermesant M, Chabiniok R, Chinchapatnam P, Mansi T, Billet F, Moireau P, Peyrat JM, Wong K, Relan J, Rhode K, Ginks M, Lambiase P, Delingette H, Sorine M, Rinaldi CA, Chapelle D, Razavi R, Ayache N (2012) Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med Image Anal 16(1):201–215PubMedCrossRefGoogle Scholar
  47. 47.
    Sermesant M, Konukoğlu E, Delingette H, Coudière Y, Chinchapatnam P, Rhode KS, Razavi R, Ayache N (2007) An anisotropic multi-front fast marching method for real-time simulation of cardiac electrophysiology. Lecture Notes in Computer Science (FIMH) 4466:160–169Google Scholar
  48. 48.
    Shiffman S, Rubin G, Napel S (2000) Medical image segmentation using analysis of isolable-contour maps. IEEE Trans Med Imag 19(11):1064–1074CrossRefGoogle Scholar
  49. 49.
    Sigg DC, Iaizzo PA, Xiao Y-F, He B (2010) Cardiac electrophysiology methods and models. Springer, LondonGoogle Scholar
  50. 50.
    Smith N, de Vecchi A, McCormick M, Nordsletten D, Camara O, Frangi AF, Delingette H, Sermesant M, Relan J, Ayache N, Krueger MW, Schulze WHW, Hose R, Valverde I, Beerbaum P, Staicu C, Siebes M, Spaan J, Hunter P, Weese J, Lehmann H, Chapelle D, Razavi R (2011) euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus 1(3):349–364PubMedCrossRefGoogle Scholar
  51. 51.
    Streeter D, Spontnitz H, Patel D, Ross J, Sonnenblick E (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24:339–347PubMedCrossRefGoogle Scholar
  52. 52.
    Summers P, Bhalerao A, Hawkes D (1997) Multiresolution, model-based segmentation of mr angiograms. J Magn Reson Imaging 7(6):950–957PubMedCrossRefGoogle Scholar
  53. 53.
    Tobón-Gomez C, De Craene M (2011) A multimodal database for the 1st cardiac motion analysis challenge. Lecture Notes in Computer Science (STACOM) 7085:33–44Google Scholar
  54. 54.
    Toumoulin C, Boldak C, Dillenseger JL, Coatrieux JL, Rolland Y (2001) Fast detection and characterization of vessels in very large 3-D data sets using geometrical moments. IEEE Trans Biomed Eng 48(5):604–606PubMedCrossRefGoogle Scholar
  55. 55.
    Velut J, Toumoulin C, Coatrieux JL (2010) 3D coronary structure tracking algorithm with regularization and multiple hypotheses in MRI. In: Biomedical imaging: from nano to macro (ISBI), pp 37–40. Piscataway, NJ, USAGoogle Scholar
  56. 56.
    Verdonck B, Bloch L, Maitre H, Vandermeulen D, Suetens P, Marchal G (1996) Accurate segmentation of blood vessels from 3D medical images. In: International conference on image processing (ICIP) 3:311–314Google Scholar
  57. 57.
    Wang H, Amini A (2012) Cardiac motion and deformation recovery from MRI: a review. IEEE Trans Med Imag 31(2):487–503CrossRefGoogle Scholar
  58. 58.
    Wilson DL, Noble JA (1997) Segmentation of cerebral vessels and aneurysms from mr angiography data. In: Information processing in medical imaging (IPMI), pp 423–428Google Scholar
  59. 59.
    Wittek A, Miller K, Kikinis R, Warfield SK (2007) Patient-specific model of brain deformation: application to medical image registration. J Biomech 40(4):919–929PubMedCrossRefGoogle Scholar
  60. 60.
    Zhao F, Zhang H, Wahle A, Thomas MT, Stolpen AH, Scholz TD, Sonka M (2009) Congenital aortic disease: 4D magnetic resonance segmentation and quantitative analysis. Med Image Anal 13(3):483–493PubMedCrossRefGoogle Scholar
  61. 61.
    Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imag 27(11):1668–1681CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2013

Authors and Affiliations

  • J. Weese
    • 1
  • A. Groth
    • 1
  • H. Nickisch
    • 1
  • H. Barschdorf
    • 1
  • F. M. Weber
    • 1
  • J. Velut
    • 2
  • M. Castro
    • 2
  • C. Toumoulin
    • 2
  • J. L. Coatrieux
    • 2
  • M. De Craene
    • 3
  • G. Piella
    • 3
  • C. Tobón-Gomez
    • 3
  • A. F. Frangi
    • 3
    • 4
  • D. C. Barber
    • 5
  • I. Valverde
    • 6
  • Y. Shi
    • 5
  • C. Staicu
    • 5
  • A. Brown
    • 5
  • P. Beerbaum
    • 6
  • D. R. Hose
    • 5
  1. 1.Philips Research LaboratoriesHamburgGermany
  2. 2.Laboratoire Traitement du Signal et de l’ImageUniversité de Rennes and Unit INSERM U1099RennesFrance
  3. 3.CISTIBUniversitat Pompeu FabraBarcelonaSpain
  4. 4.Department of Mechanical EngineeringThe University of SheffieldSheffieldUK
  5. 5.Group of Medical Physics, School of Medicine and Biomedical Sciences, The Royal Hallamshire HospitalThe University of SheffieldSheffieldUK
  6. 6.Division of Imaging Sciences and Biomedical EngineeringKing’s College LondonLondonUK

Personalised recommendations