Medical & Biological Engineering & Computing

, Volume 51, Issue 3, pp 257–265 | Cite as

In vitro quantification of the performance of model-based mono-planar and bi-planar fluoroscopy for 3D joint kinematics estimation

  • Luca Tersi
  • Arnaud Barré
  • Silvia Fantozzi
  • Rita Stagni
Original Article

Abstract

Model-based mono-planar and bi-planar 3D fluoroscopy methods can quantify intact joints kinematics with performance/cost trade-off. The aim of this study was to compare the performances of mono- and bi-planar setups to a marker-based gold-standard, during dynamic phantom knee acquisitions. Absolute pose errors for in-plane parameters were lower than 0.6 mm or 0.6° for both mono- and bi-planar setups. Mono-planar setups resulted critical in quantifying the out-of-plane translation (error < 6.5 mm), and bi-planar in quantifying the rotation along bone longitudinal axis (error < 1.3°). These errors propagated to joint angles and translations differently depending on the alignment of the anatomical axes and the fluoroscopic reference frames. Internal-external rotation was the least accurate angle both with mono- (error < 4.4°) and bi-planar (error < 1.7°) setups, due to bone longitudinal symmetries. Results highlighted that accuracy for mono-planar in-plane pose parameters is comparable to bi-planar, but with halved computational costs, halved segmentation time and halved ionizing radiation dose. Bi-planar analysis better compensated for the out-of-plane uncertainty that is differently propagated to relative kinematics depending on the setup. To take its full benefits, the motion task to be investigated should be designed to maintain the joint inside the visible volume introducing constraints with respect to mono-planar analysis.

Keywords

3D Fluoroscopy Joint kinematics Mono-planar Bi-planar Roentgen stereophotogrammetric analysis 

References

  1. 1.
    Acker S, Li R, Murray H, John PS, Banks S, Mu S, Wyss U, Deluzio K (2011) Accuracy of single-plane fluoroscopy in determining relative position and orientation of total knee replacement components. J Biomech 44(4):784–787PubMedCrossRefGoogle Scholar
  2. 2.
    Akbarshahi M, Schache AG, Fernandez JW, Baker R, Banks S, Pandy MG (2010) Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity. J Biomech 43(7):1292–1301PubMedCrossRefGoogle Scholar
  3. 3.
    Amiri S, Wilson DR, Masri BA, Sharma G, Anglin C (2011) A novel multi-planar radiography method for three dimensional pose reconstruction of the patellofemoral and tibiofemoral joints after arthroplasty. J Biomech 44(9):1757–1764PubMedCrossRefGoogle Scholar
  4. 4.
    Baka N, de Bruijne M, van Walsum T, Kaptein B, Giphart J, Schaap M, Niessen W, Lelieveldt B (2012) Statistical shape model based femur kinematics from biplane fluoroscopy. IEEE Trans Med Imaging 31(8):1573–1583Google Scholar
  5. 5.
    Banks SA, Hodge WA (1996) Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Bio-Med Eng 43(6):638–649CrossRefGoogle Scholar
  6. 6.
    Benedetti M, Catani F, Leardini A, Pignotti E, Giannini S (1998) Data management in gait analysis for clinical applications. Clin Biomech 13(3):204–215CrossRefGoogle Scholar
  7. 7.
    Bey MJ, Kline SK, Tashman S, Zauel R (2008) Accuracy of biplane x-ray imaging combined with model-based tracking for measuring in vivo patellofemoral joint motion. J Orthop Surg Res 3(1):38PubMedCrossRefGoogle Scholar
  8. 8.
    Bey MJ, Peltz CD, Ciarelli K, Kline SK, Divine GW, Van Holsbeeck M, Muh S, Kolowich PA, Lock TR, Moutzouros V (2011) In vivo shoulder function after surgical repair of a torn rotator cuff glenohumeral joint mechanics, shoulder strength, clinical outcomes, and their interaction. Am J Sports Med 39(10):2117–2129PubMedCrossRefGoogle Scholar
  9. 9.
    Bey MJ, Zauel R, Brock SK, Tashman S (2006) Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J Biomech Eng 128(4):604PubMedCrossRefGoogle Scholar
  10. 10.
    Bingham J, Li G (2006) An optimized image matching method for determining in vivo TKA kinematics with a dual-orthogonal fluoroscopic imaging system. J Biomech Eng 128(4):588PubMedCrossRefGoogle Scholar
  11. 11.
    Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160PubMedCrossRefGoogle Scholar
  12. 12.
    Börlin N, Thien T, Kärrholm J (2002) The precision of radiostereometric measurements. Manual vs. digital measurements. J Biomech 35(1):69–79PubMedCrossRefGoogle Scholar
  13. 13.
    Cappozzo A, Cappello A, Croce UD, Pensalfini F (1997) Surface-marker cluster design criteria for 3-D bone movement reconstruction. IEEE Trans Biomed Eng 44(12):1165–1174PubMedCrossRefGoogle Scholar
  14. 14.
    Conti G, Cristofolini L, Juszczyk M, Leardini A, Viceconti M (2008) Comparison of three standard anatomical reference frames for the tibia–fibula complex. J Biomech 41(16):3384–3389PubMedCrossRefGoogle Scholar
  15. 15.
    Dennis DA, Komistek RD, Hoff WA, Gabriel SM (1996) In vivo knee kinematics derived using an inverse perspective technique. Clin Orthop Relat Res 331:107–117PubMedCrossRefGoogle Scholar
  16. 16.
    Dennis DA, Mahfouz MR, Komistek RD, Hoff W (2005) In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech 38(2):241–253PubMedCrossRefGoogle Scholar
  17. 17.
    Fregly BJ, Rahman HA, Banks SA (2005) Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy. J Biomech Eng 127(4):692–699PubMedCrossRefGoogle Scholar
  18. 18.
    Garling EH, Kaptein BL, Mertens B, Barendregt W, Veeger HEJ, Nelissen RGHH, Valstar ER (2007) Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers. J Biomech 40(Suppl 1):S18–S24PubMedCrossRefGoogle Scholar
  19. 19.
    Glaser D, Komistek RD, Cates HE, Mahfouz MR (2008) Clicking and squeaking: in vivo correlation of sound and separation for different bearing surfaces. J Bone Joint Surg 90(Suppl 4):112–120PubMedCrossRefGoogle Scholar
  20. 20.
    Gronenschild E (1997) The accuracy and reproducibility of a global method to correct for geometric image distortion in the x-ray imaging chain. Med Phys 24(12):1875–1888PubMedCrossRefGoogle Scholar
  21. 21.
    Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105(2):136–144PubMedCrossRefGoogle Scholar
  22. 22.
    Hanson RJ, Norris MJ (1981) Analysis of measurements based on the singular value decomposition. SIAM J Sci Stat Comput 2(3):363CrossRefGoogle Scholar
  23. 23.
    Hirokawa S, Abrar Hossain M, Kihara Y, Ariyoshi S (2008) A 3D kinematic estimation of knee prosthesis using X-ray projection images: clinical assessment of the improved algorithm for fluoroscopy images. Med Biol Eng Comput 46(12):1253–1262PubMedCrossRefGoogle Scholar
  24. 24.
    Hurschler C, Seehaus F, Emmerich J, Kaptein BL, Windhagen H (2009) Comparison of the model-based and marker-based roentgen stereophotogrammetry methods in a typical clinical setting. J Arthroplast 24(4):594–606CrossRefGoogle Scholar
  25. 25.
    Illingworth J, Kittler J (1988) A survey of the Hough transform. Comput Vis Graph Image Process 44(1):87–116CrossRefGoogle Scholar
  26. 26.
    Kaptein BL, Valstar ER, Stoel BC, Reiber HC, Nelissen RG (2007) Clinical validation of model-based RSA for a total knee prosthesis. Clin Orthop Relat Res 464:205–209PubMedGoogle Scholar
  27. 27.
    Kaptein BL, Valstar ER, Stoel BC, Rozing PM, Reiber JHC (2003) A new model-based RSA method validated using CAD models and models from reversed engineering. J Biomech 36(6):873–882PubMedCrossRefGoogle Scholar
  28. 28.
    Kedgley AE, Jenkyn TR (2009) RSA calibration accuracy of a fluoroscopy-based system using nonorthogonal images for measuring functional kinematics. Med Phys 36(7):3176PubMedCrossRefGoogle Scholar
  29. 29.
    Kuo M-Y, Tsai T-Y, Lin C-C, Lu T-W, Hsu H-C, Shen W-C (2011) Influence of soft tissue artifacts on the calculated kinematics and kinetics of total knee replacements during sit-to-stand. Gait Posture 33(3):379–384PubMedCrossRefGoogle Scholar
  30. 30.
    Lavallee S, Szeliski R (1995) Recovering the position and orientation of free-form objects from image contours using 3D distance maps. IEEE Trans Pattern Anal Mach Intell 17(4):378–390CrossRefGoogle Scholar
  31. 31.
    Li G, Van de Velde SK, Bingham JT (2008) Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J Biomech 41(7):1616–1622PubMedCrossRefGoogle Scholar
  32. 32.
    Ludewig PM, Reynolds JE (2009) The association of scapular kinematics and glenohumeral joint pathologies. J Orthop Sports Phys Therapy 39(2):90–104Google Scholar
  33. 33.
    Mahfouz MR, Hoff WA, Komistek RD, Dennis DA (2003) A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images. IEEE Trans Med Imaging 22(12):1561–1574PubMedCrossRefGoogle Scholar
  34. 34.
    Miranda DL, Schwartz JB, Loomis AC, Brainerd EL, Fleming BC, Crisco JJ (2011) Static and dynamic error of a biplanar videoradiography system using marker-based and markerless tracking techniques. J Biomech Eng 133(12):121002–121008PubMedCrossRefGoogle Scholar
  35. 35.
    Moro-oka T, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, Iwamoto Y, Banks SA (2007) Can magnetic resonance imaging-derived bone models be used for accurate motion measurement with single-plane three-dimensional shape registration? J Orthop Res 25(7):867–872PubMedCrossRefGoogle Scholar
  36. 36.
    Okamoto N, Breslauer L, Hedley AK, Mizuta H, Banks SA (2011) In vivo knee kinematics in patients with bilateral total knee arthroplasty of 2 designs. J Arthroplast 26(6):914–918CrossRefGoogle Scholar
  37. 37.
    Önsten I, Berzins A, Shott S, Sumner DR (2001) Accuracy and precision of radiostereometric analysis in the measurement of THR femoral component translations: human and canine in vitro models. J Orthop Res 19(6):1162–1167PubMedCrossRefGoogle Scholar
  38. 38.
    Ploegmakers MJM, Ginsel B, Meijerink HJ, de Rooy JW, de Waal Malefijt MC, Verdonschot N, Banks SA (2010) Physical examination and in vivo kinematics in two posterior cruciate ligament retaining total knee arthroplasty designs. The Knee 17(3):204–209PubMedCrossRefGoogle Scholar
  39. 39.
    Seehaus F, Emmerich J, Kaptein BL, Windhagen H, Hurschler C (2009) Experimental analysis of model-based roentgen stereophotogrammetric analysis (MBRSA) on four typical prosthesis components. J Biomech Eng 131(4):041004PubMedCrossRefGoogle Scholar
  40. 40.
    Söderkvist I, Wedin P-Å (1993) Determining the movements of the skeleton using well-configured markers. J Biomech 26(12):1473–1477PubMedCrossRefGoogle Scholar
  41. 41.
    Stagni R, Fantozzi S, Cappello A, Leardini A (2005) Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry: a study on two subjects. Clin Biomech 20(3):320–329CrossRefGoogle Scholar
  42. 42.
    El-mihoub TA, Hopgood AA, Nolle L, Battersby A (2006) Hybrid genetic algorithms: a review. Eng Lett 13(2):124–137 Google Scholar
  43. 43.
    Tashman S, Kolowich P, Collon D, Anderson K, Anderst W (2007) Dynamic function of the ACL-reconstructed knee during running. Clin Orthop Relat Res 454:66–73PubMedCrossRefGoogle Scholar
  44. 44.
    Tersi L, Fantozzi S, Stagni R (2010) 3D elbow kinematics with mono-planar fluoroscopy: in silico evaluation. EURASIP J Adv Signal Process 2010, art ID 142989. doi:10.1155/2010/142989
  45. 45.
    Tersi L, Fantozzi S, Stagni R, Cappello A (2012) Fluoroscopic analysis for the estimation of in vivo elbow kinematics: influence of 3D model. J Mech Med Biol 12(3), art ID 1250046. doi:10.1142/S0219519411004769
  46. 46.
    Tersi L, Stagni R, Fantozzi S, Cappello A (2010) Genetic Algorithm as a robust method for the joint kinematics estimation with mono-planar 3D fluoroscopy. In: XVII ESB Conference, Edinburgh, Scotland, UK, July 2010Google Scholar
  47. 47.
    Tsai T-Y, Lu T-W, Chen C-M, Kuo M-Y, Hsu H-C (2010) A volumetric model-based 2D to 3D registration method for measuring kinematics of natural knees with single-plane fluoroscopy. Med Phys 37(3):1273–1284PubMedCrossRefGoogle Scholar
  48. 48.
    Tsai T-Y, Lu T-W, Kuo M-Y, Lin C-C (2011) Effects of soft tissue artifacts on the calculated kinematics and kinetics of the knee during stair-ascent. J Biomech 44(6):1182–1188PubMedCrossRefGoogle Scholar
  49. 49.
    Valstar ER, Gill R, Ryd L, Flivik G, Börlin N, Kärrholm J (2005) Guidelines for standardization of radiostereometry (RSA) of implants. Acta Orthop 76(4):563–572PubMedCrossRefGoogle Scholar
  50. 50.
    Valstar ER, Nelissen RGHH, Reiber JHC, Rozing PM (2002) The use of Roentgen stereophotogrammetry to study micromotion of orthopaedic implants. ISPRS J Photogramm Remote Sens 56(5–6):376–389CrossRefGoogle Scholar
  51. 51.
    Wright AH (1991) Genetic algorithms for real parameter optimization. Found Genet Algorithms 1(1991):205–218Google Scholar
  52. 52.
    Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech 35(4):543–548PubMedCrossRefGoogle Scholar
  53. 53.
    Yamazaki T, Watanabe T, Nakajima Y, Sugamoto K, Tomita T, Yoshikawa H, Tamura S (2004) Improvement of depth position in 2-D/3-D registration of knee implants using single-plane fluoroscopy. IEEE Trans Med Imaging 23(5):602–612PubMedCrossRefGoogle Scholar
  54. 54.
    You B-M, Siy P, Anderst W, Tashman S (2001) In vivo measurement of 3-D skeletal kinematics from sequences of biplane radiographs: application to knee kinematics. IEEE Trans Med Imaging 20(6):514–525PubMedCrossRefGoogle Scholar
  55. 55.
    Zhu Z, Massimini DF, Wang G, Warner JJP, Li G (2012) The accuracy and repeatability of an automatic 2D–3D fluoroscopic image-model registration technique for determining shoulder joint kinematics. Med Eng Phys 34(9):1303–1309PubMedCrossRefGoogle Scholar
  56. 56.
    Zuffi S, Leardini A, Catani F, Fantozzi S, Cappello A (1999) A model-based method for the reconstruction of total knee replacement kinematics. IEEE Trans Med Imaging 18(10):981–991PubMedCrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2012

Authors and Affiliations

  • Luca Tersi
    • 1
  • Arnaud Barré
    • 2
  • Silvia Fantozzi
    • 1
    • 3
  • Rita Stagni
    • 1
    • 3
  1. 1.Health Sciences and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR)University of BolognaBolognaItaly
  2. 2.Laboratory of Movement Analysis and Measurement (LMAM)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  3. 3.Department of Electrical, Electronic, and Information Engineering ″Guglielmo Marconi″ (DEI)University of BolognaBolognaItaly

Personalised recommendations