Skip to main content

Advertisement

Log in

Quantitative color analysis for capillaroscopy image segmentation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This communication introduces a novel approach for quantitatively evaluating the role of color space decomposition in digital nailfold capillaroscopy analysis. It is clinically recognized that any alterations of the capillary pattern, at the periungual skin region, are directly related to dermatologic and rheumatic diseases. The proposed algorithm for the segmentation of digital capillaroscopy images is optimized with respect to the choice of the color space and the contrast variation. Since the color space is a critical factor for segmenting low-contrast images, an exhaustive comparison between different color channels is conducted and a novel color channel combination is presented. Results from images of 15 healthy subjects are compared with annotated data, i.e. selected images approved by clinicians. By comparison, a set of figures of merit, which highlights the algorithm capability to correctly segment capillaries, their shape and their number, is extracted. Experimental tests depict that the optimized procedure for capillaries segmentation, based on a novel color channel combination, presents values of average accuracy higher than 0.8, and extracts capillaries whose shape and granularity are acceptable. The obtained results are particularly encouraging for future developments on the classification of capillary patterns with respect to dermatologic and rheumatic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alonso F, Algorri M, FIores-Mangas F (2004) Composite index for the quantitative evaluation of image segmentation results. In: Engineering in Medicine and Biology Society, 2004. IEMBS ‘04. 26th Annual International Conference of the IEEE, San Francisco, pp 1794–1797

  2. Bezemer R, Dobbe JG, Bartels SA, Christiaan Boerma E, Elbers PW, Heger M, Ince C (2011) Rapid automatic assessment of microvascular density in sidestream dark field images. Med Biol Eng Comput 49(11):1269–1278

    Article  PubMed  Google Scholar 

  3. Bollinger A, Flagrell B (1990) Clinical capillaroscopy—a guide to its use in clinical research and practice. Hogrefe Huber, Toronto and Lewiston

    Google Scholar 

  4. Cardenes R, De Luis-Garcia R, Bach-Cuadram M (2009) A multidimensional segmentation evaluation for medical image data. Comput Methods Programs Biomed 96(2):108–124

    Article  PubMed  Google Scholar 

  5. Chia-Hsien W, Tsu-Yi H, Wei-Duen L, Joung-Liang L, Der-Yuan C, Kuan-Ching L (2008) A novel method for classification of high-resolution nailfold capillary microscopy images. In: First IEEE International Conference on Ubi-Media Computing, pp 513–518

  6. Chia-Hsien W, Wei-Duen L, Kuan-Ching L (2007) Classification framework for nailfold capillary microscopy images. In: IEEE Region 10 Conference TENCON 2007, pp 1–4

  7. Cutolo M, Pizzorni C, Secchi M, Sulli A (2008) Capillaroscopy. Best Pract Res Clin Rheumatol 22(6):1093–1108

    Article  PubMed  Google Scholar 

  8. Cutolo M, Sulli A, Pizzorni C, Accardo S (2000) Nailfold videocapillaroscopy assessment of microvascular damage in systemic sclerosis. J Rheumatol 27:155–160

    PubMed  CAS  Google Scholar 

  9. De Visser M, Emslie-Smith A, Engel A (1989) Early ultrastructural alterations in adult dermatomyositis: capillary abnormalities precede other structural changes in muscle. J Neurol Sci 94:1

    Article  Google Scholar 

  10. Dobbe JG, Streekstra GJ, Atasever B, van Zijderveld R, Ince C (2008) Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis. Med Biol Eng Comput 46(7):659–670

    Article  PubMed  CAS  Google Scholar 

  11. Fang G, Kwok N (2009) Image segmentation using adaptively selected color space. In: 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp 1838–1843

  12. Farid H (2001) Blind inverse gamma correction. IEEE Trans Image Process 10(10):1428–1433

    Article  PubMed  CAS  Google Scholar 

  13. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874

    Article  Google Scholar 

  14. Gibson WC, Bosley HJSGR (1956) Photomicrographic studies of the nailbed capillary networks in human control subjects. J Nerv Ment Dis 219:219–231

    Google Scholar 

  15. Goffredo M, Schmid M, Conforto S, Carli M, Neri A, D’Alessio T (2009) Markerless human motion analysis in Gauss-Laguerre transform domain: an application to sit-to-stand in young and elderly people. IEEE Trans Inf Technol Biomed 13(2):207–216

    Article  PubMed  Google Scholar 

  16. Goffredo M, Schmid M, Conforto S, D’Alessio T (2005) A markerless sub-pixel motion estimation technique to reconstruct kinematics and estimate the centre of mass in posturography. Med Eng Phys 28(7):719–726

    Article  PubMed  Google Scholar 

  17. Gudmundsson M, El-Kwae E, Kabuka M (1998) Edge detection in medical images using a genetic algorithm. IEEE Trans Med Imaging 17(3):469–474

    Article  PubMed  CAS  Google Scholar 

  18. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36

    PubMed  CAS  Google Scholar 

  19. Hu Q, Mahler F (1999) New system for image analysis in nailfold capillaroscopy. Microcirculation 6:227–235

    PubMed  CAS  Google Scholar 

  20. Jones B, Oral M, Morris C, Ring EFJ (2001) A proposed taxonomy for nailfold capillaries based on their morphology. IEEE Trans Med Imaging 20(4):333–341

    Article  PubMed  CAS  Google Scholar 

  21. Kabasakal Y, Elvins D, Ring E, McHugh N (1996) Quantitative nailfold capillaroscopy findings in a population with connective tissue disease and in normal healthy controls. Ann Rheum Dis 55:507–512

    Article  PubMed  CAS  Google Scholar 

  22. Kwasnicka H, Paradowski M (2007) Capillaroscopy image analysis as an automatic image annotation problem. In: 6th International Conference on Computer Information Systems and Industrial Management Applications, pp 266–27

  23. Kwok N, Ha Q, Fang G (2009) Effect of color space on color image segmentation. CISP ‘09. In: 2nd International Congress on Image and Signal Processing, pp 1–5

  24. Lee P, Leung F, Alderdice C, Armstrong S (1983) Nailfold capillary microscopy in the connective tissue diseases: a semiquantitative assessment. J Rheumatol 10(6):930–938

    PubMed  CAS  Google Scholar 

  25. Maricq HR, Maize JC (1982) Nailfold capillary abnormalities. Clin Rheum Dis 8(2):455–478

    Google Scholar 

  26. Maricq M (1988) Raynauds phenomenon and microvascular abnormalities in scleroderma (systemic sclerosis). In: Black MJ (ed) Systemic sclerosis: scleroderma, pp 151–66

  27. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  28. Paradowski M, Kwasnicka H, Borysewicz K (2009) Avascular area detection in nailfold capillary images. In: International Multiconference on Computer Science and Information Technology, IMCSIT ‘09, pp 419–424

  29. Pichon E, Tannenbaum A, Kikinis R (2004) A statistically based flow for image segmentation. Med Image Anal 8(3):267–274

    Google Scholar 

  30. Pratt WK (1978) Digital image processing. Wiley, New York

    Google Scholar 

  31. Riao-Rojas J, Prieto-Ortiz F, Morantes L, Sanchez-Camperos E, Jaramillo-Ayerbe F (2007) Segmentation and extraction of morphologic features from capillary images. Sixth Mexican International Conference on Artificial Intelligence—Special Session, MICAI 2007, pp 148–159

  32. Rouen LR, Terry EN, Doft BH, Redisch W (1972) Classification and measurement of surface microvessels in man. Microvasc Res 4:285–292

    Article  PubMed  CAS  Google Scholar 

  33. Tanimoto T (1958) An elementary mathematical theory of classification and prediction. IBM internal rep, New York

    Google Scholar 

  34. Wang Yuedong XH (2009) Studies on color space selection and methods of segmentation quality evaluation. In: 1st International Conference on Information Science and Engineering (ICISE), pp 1437–1440

  35. Wesolkowski S, Jernigan M, Dony R (2000) Comparison of color image edge detectors in multiple color spaces. In: International Conference on Image Processing, vol 2, pp 796–799

  36. Zhang Y (1996) A survey on evaluation methods for image segmentation. Pattern Recognit 29(8):1335–1346

    Article  Google Scholar 

  37. Zhanwu X, Miaoliang Z (2006) Color-based skin detection: survey and evaluation. In: Proceedings of the 12th International Conference on Multi-Media Modelling, vol 10, Beijing

  38. Zhong J, Asker CL, Salerud EG (2000) Imaging, image processing and pattern analysis of skin capillary ensembles. Skin Res Technol 6:45–57

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of IFO San Gallicano Dermatology Institute, IRCCS, Rome, Italy. In particular, we thank A. Di Carlo and M. Ardigò for the time patiently spent with us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Goffredo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goffredo, M., Schmid, M., Conforto, S. et al. Quantitative color analysis for capillaroscopy image segmentation. Med Biol Eng Comput 50, 567–574 (2012). https://doi.org/10.1007/s11517-012-0907-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0907-7

Keywords

Navigation