Skip to main content

Advertisement

Log in

Differential remodeling responses of cerebral and skeletal muscle arterioles in a novel organ culture system

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Evidence suggests that maladaptive changes in the cerebral microcirculation may contribute to ischemia in numerous diseases. We sought, therefore, to develop an ex vivo organ culture system to study early changes in cerebral arteriolar structure and function, and to compare associated findings to those for non-cerebral arterioles. Pilot studies revealed that rabbit cerebral arterioles maintained contractility longer when cultured in media containing rabbit-specific plasma rather than fetal bovine serum. Cerebral and skeletal muscle arterioles were cultured in a pressure myograph for 5 days; maximum dilatory and contractile responses were measured at 0, 1, 3, and 5 days. Passive properties were preserved in cerebral arterioles over the entire culture period, although skeletal muscle arterioles underwent constrictive remodeling. Cerebral arterioles also maintained a myogenic capability over the entire culture period, albeit at progressively larger diameters, whereas the skeletal muscle arterioles did so only over 3 days. Culture in rabbit serum, which contains numerous growth factors and clotting factors, did not induce or increase inward remodeling in cerebral or skeletal arterioles. These results suggest inherent, organ-specific differences in arteriolar remodeling, and that extensive results in the literature on non-cerebral arterioles should not be extrapolated to predict responses in the cerebral microcirculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adner M, Cantera L, Ehlert F, Nilsson L, Edvinsson L (1996) Plasticity of contractile endothelin-B receptors in human arteries after organ culture. Br J Pharmacol 119:1159–1166

    PubMed  CAS  Google Scholar 

  2. Adner M, Uddman E, Cardell LO, Edvinsson L (1998) Regional variation in appearance of vascular contractile endothelin-B receptors following organ culture. Cardiovasc Res 37:254–262

    Article  PubMed  CAS  Google Scholar 

  3. Bakker EN, Buus CL, Spaan JA, Perree J, Ganga A, Rolf TM, Sorop O, Bramsen LH, Mulvany MJ, Vanbavel E (2005) Small artery remodeling depends on tissue-type transglutaminase. Circ Res 96:119–126

    Article  PubMed  CAS  Google Scholar 

  4. Bakker EN, Buus CL, VanBavel E, Mulvany MJ (2004) Activation of resistance arteries with endothelin-1: from vasoconstriction to functional adaptation and remodeling. J Vasc Res 41:174–182

    Article  PubMed  CAS  Google Scholar 

  5. Bakker EN, Pistea A, Vanbavel E (2008) Transglutaminases in vascular biology: relevance for vascular remodeling and atherosclerosis. J Vasc Res 45:271–278

    Article  PubMed  CAS  Google Scholar 

  6. Bakker EN, Sorop O, Spaan JA, VanBavel E (2004) Remodeling of resistance arteries in organoid culture is modulated by pressure and pressure pulsation and depends on vasomotion. Am J Physiol Heart Circ Physiol 286:H2052–H2056

    Article  PubMed  CAS  Google Scholar 

  7. Bakker EN, van Der Meulen ET, Spaan JA, VanBavel E (2000) Organoid culture of cannulated rat resistance arteries: effect of serum factors on vasoactivity and remodeling. Am J Physiol Heart Circ Physiol 278:H1233–H1240

    PubMed  CAS  Google Scholar 

  8. Baumbach GL, Dobrin PB, Hart MN, Heistad DD (1988) Mechanics of cerebral arterioles in hypertensive rats. Circ Res 62:56–64

    PubMed  CAS  Google Scholar 

  9. Baumbach GL, Hajdu MA (1993) Mechanics and composition of cerebral arterioles in renal and spontaneously hypertensive rats. Hypertension 21:816–826

    PubMed  CAS  Google Scholar 

  10. Baumbach GL, Heistad DD (1989) Remodeling of cerebral arterioles in chronic hypertension. Hypertension 13:968–972

    PubMed  CAS  Google Scholar 

  11. Baumbach GL, Sigmund CD, Faraci FM (2003) Cerebral arteriolar structure in mice overexpressing human renin and angiotensinogen. Hypertension 41:50–55

    Article  PubMed  CAS  Google Scholar 

  12. Bryan RM Jr, Marrelli SP, Steenberg ML, Schildmeyer LA, Johnson TD (2001) Effects of luminal shear stress on cerebral arteries and arterioles. Am J Physiol Heart Circ Physiol 280:H2011–H2022

    PubMed  CAS  Google Scholar 

  13. Cipolla MJ, Smith J, Kohlmeyer MM, Godfrey JA (2009) SKCa and IKCa channels, myogenic tone, and vasodilator responses in middle cerebral arteries and parenchymal arterioles: effect of ischemia and reperfusion. Stroke 40:1451–1457

    Article  PubMed  Google Scholar 

  14. Dacey RG Jr, Duling BR (1982) A study of rat intracerebral arterioles: methods, morphology, and reactivity. Am J Physiol 243:H598–H606

    PubMed  Google Scholar 

  15. Dajnowiec D, Langille BL (2007) Arterial adaptations to chronic changes in haemodynamic function: coupling vasomotor tone to structural remodelling. Clin Sci (Lond) 113:15–23

    Article  Google Scholar 

  16. Flavahan NA, Bailey SR, Flavahan WA, Mitra S, Flavahan S (2005) Imaging remodeling of the actin cytoskeleton in vascular smooth muscle cells after mechanosensitive arteriolar constriction. Am J Physiol Heart Circ Physiol 288:H660–H669

    Article  PubMed  CAS  Google Scholar 

  17. Hajdu MA, Baumbach GL (1994) Mechanics of large and small cerebral arteries in chronic hypertension. Am J Physiol 266:H1027–H1033

    PubMed  CAS  Google Scholar 

  18. Hogg RJ, Pucacco LR, Carter NW, Laptook AR, Kokko JP (1984) In situ PCO2 in the renal cortex, liver, muscle, and brain of the New Zealand white rabbit. Am J Physiol 247:F491–F498

    PubMed  CAS  Google Scholar 

  19. Humphrey JD, Baek S, Niklason LE (2007) Biochemomechanics of cerebral vasospasm and its resolution: I. A new hypothesis and theoretical framework. Ann Biomed Eng 35:1485–1497

    Article  PubMed  CAS  Google Scholar 

  20. Langille BL, Dajnowiec D (2005) Cross-linking vasomotor tone and vascular remodeling: a novel function for tissue transglutaminase? Circ Res 96:9–11

    Article  PubMed  CAS  Google Scholar 

  21. Loufrani L, Henrion D (2008) Role of the cytoskeleton in flow (shear stress)-induced dilation and remodeling in resistance arteries. Med Biol Eng Comput 46:451–460

    Article  PubMed  Google Scholar 

  22. Lyon M, Rushton G, Gallagher JT (1997) The interaction of the transforming growth factor-betas with heparin/heparan sulfate is isoform-specific. J Biol Chem 272:18000–18006

    Article  PubMed  CAS  Google Scholar 

  23. Macdonald RL, Pluta RM, Zhang JH (2007) Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol 3:256–263

    Article  PubMed  CAS  Google Scholar 

  24. Marrelli SP, O’Neil RG, Brown RC, Bryan RM, Jr (2007) PLA2 and TRPV4 channels regulate endothelial calcium in cerebral arteries. Am J Physiol Heart Circ Physiol 292:H1390–H1397

    Article  PubMed  CAS  Google Scholar 

  25. Martinez-Lemus LA (2008) Persistent agonist-induced vasoconstriction is not required for angiotensin II to mediate inward remodeling of isolated arterioles with myogenic tone. J Vasc Res 45:211–221

    Article  PubMed  CAS  Google Scholar 

  26. Martinez-Lemus LA, Hill MA, Meininger GA (2009) The plastic nature of the vascular wall: a continuum of remodeling events contributing to control of arteriolar diameter and structure. Physiology (Bethesda) 24:45–57

    Google Scholar 

  27. Martinez-Lemus LA, Wu X, Wilson E, Hill MA, Davis GE, Davis MJ, Meininger GA (2003) Integrins as unique receptors for vascular control. J Vasc Res 40:211–233

    Article  PubMed  CAS  Google Scholar 

  28. Mulvany MJ (2008) Small artery remodelling in hypertension: causes, consequences and therapeutic implications. Med Biol Eng Comput 46:461–467

    Article  PubMed  Google Scholar 

  29. Ohkuma H, Itoh K, Shibata S, Suzuki S (1997) Morphological changes of intraparenchymal arterioles after experimental subarachnoid hemorrhage in dogs. Neurosurgery 41:230–235 discussion 235–236

    Article  PubMed  CAS  Google Scholar 

  30. Pistea A, Bakker EN, Spaan JA, VanBavel E (2005) Flow inhibits inward remodeling in cannulated porcine small coronary arteries. Am J Physiol Heart Circ Physiol 289:H2632–H2640

    Article  PubMed  CAS  Google Scholar 

  31. Prewitt RL, Rice DC, Dobrian AD (2002) Adaptation of resistance arteries to increases in pressure. Microcirculation 9:295–304

    PubMed  Google Scholar 

  32. Reneman RS, Hoeks AP (2008) Wall shear stress as measured in vivo: consequences for the design of the arterial system. Med Biol Eng Comput 46:499–507

    Article  PubMed  Google Scholar 

  33. Sadoshima S, Thames M, Heistad D (1981) Cerebral blood flow during elevation of intracranial pressure: role of sympathetic nerves. Am J Physiol 241:H78–H84

    PubMed  CAS  Google Scholar 

  34. Tamaki K, Mayhan W, Heistad D (1986) Effects of vasodilator stimuli on resistance of large and small cerebral vessels. Am J Physiol 251:H1176–H1182

    PubMed  CAS  Google Scholar 

  35. Zhang ZD, Macdonald RL (2006) Contribution of the remodeling response to cerebral vasospasm. Neurol Res 28:713–720

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Luis Martinez-Lemus for his critical review of the manuscript. This study was supported, in part, by grants from the NIH (HL-80415 and NS-62242).

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha M. Steelman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steelman, S.M., Humphrey, J.D. Differential remodeling responses of cerebral and skeletal muscle arterioles in a novel organ culture system. Med Biol Eng Comput 49, 1015–1023 (2011). https://doi.org/10.1007/s11517-011-0807-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0807-2

Keywords

Navigation