Quantitative calculation of human melatonin suppression induced by inappropriate light at night

Abstract

Melatonin (C13H16N2O2) has a wide range of functions in the body. When is inappropriately exposed to light at night, human circadian rhythm will be interfered and then melatonin secretion will become abnormal. For nearly three decades great progresses have been achieved in analytic action spectra and melatonin suppression by various light conditions. However, so far few articles focused on the quantitative calculation of melatonin suppression induced by light. In this article, an algorithm is established, in which all the contributions of rods, cones, and intrinsically photosensitive retinal ganglion cells are considered. Calculation results accords with the experimental data in references very well, which indicate the validity of this algorithm. This algorithm can also interpret the rule of melatonin suppression varying with light correlated color temperature very well.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Armstrong SM, Redman JR (1991) Melatonin: a chronobiotic with anti-aging properties? Med Hypotheses 34(4):300–309

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Beaudot WHA (1996) Adaptive spatiotemporal filtering by a neuromorphic model of the vertebrate retina. In: IEEE international conference on image processing, pp 427–430

  3. 3.

    Belenky MA, Smeraski CA, Provencio I, Sollars PJ, Pickard GE (2003) Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol 460(3):380–393

    PubMed  Article  Google Scholar 

  4. 4.

    Berson DM (2007) Phototransduction in ganglion-cell photoreceptors. Pflugers Arch 454(5):849–855

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Cajochen C, Munch M, Kobialka S, Krauchi K, Steiner R, Oelhafen P (2005) High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J Clin Endocrinol Metab 90(3):1311–1316

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Dacey DM (2000) Parallel pathways for spectral coding in primate retina. Annu Rev Neurosci 23:743–775

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, Yau KW, Gamlin PD (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433(7027):749–754

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Dawson D, Armstrong SM (1996) Chronobiotics—drugs that shift rhythms. Pharmacol Ther 69(1):15–36

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Dowling JE (1987) The retina: an approachable part of the brain. The Belknap Press of Harvard University Press, Cambridge, pp 42–80

    Google Scholar 

  10. 10.

    Doyle SE, Castrucci AM, McCall M, Provencio I, Menaker M (2006) Nonvisual light responses in the Rpe65 knockout mouse: rod loss restores sensitivity to the melanopsin system. Proc Natl Acad Sci USA 103(27):10432–10437

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Dumitrescu ON, Pucci FG, Wong KY, Berson DM (2009) Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells. J Comp Neurol 517(2):226–244

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Famiglietti EV, Kolb H (1975) A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Res 84(2):293–300

    PubMed  Article  Google Scholar 

  13. 13.

    Figueiro MG, Rea MS, Bullough JD (2006) Circadian effectiveness of two polychromatic lights in suppressing human nocturnal melatonin. Neurosci Lett 406(3):293–297

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Güler AD, Altimus CM, Ecker JL, Hattar S (2007) Multiple photoreceptors contribute to nonimage-forming visual functions predominantly through melanopsin-containing retinal ganglion cells. Cold Spring Harb Symp Quant Biol 72:509–515

    PubMed  Article  Google Scholar 

  15. 15.

    Hampson EC, Vaney DI, Weiler R (1992) Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J Neurosci 12(12):4911–4922

    PubMed  CAS  Google Scholar 

  16. 16.

    Hardeland R, Reiter RJ, Poeggeler B, Tan DX (1993) The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev 17(3):347–357

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Hokoc JN, Mariani AP (1987) Tyrosine hydroxylase immunoreactivity in the rhesus monkey retina reveals synapses from bipolar cells to dopaminergic amacrine cells. J Neurosci 7(9):2785–2793

    PubMed  CAS  Google Scholar 

  18. 18.

    Jusuf PR, Lee SC, Hannibal J, Grünert U (2007) Characterization and synaptic connectivity of melanopsin-containing ganglion cells in the primate retina. Eur J Neurosci 26(10):2906–2921

    PubMed  Article  Google Scholar 

  19. 19.

    Kawasaki A, Kardon RH (2007) Intrinsically photosensitive retinal ganglion cells. J Neuroophthalmol 27(3):195–204

    PubMed  Google Scholar 

  20. 20.

    Kolb H (1970) Organization of the outer plexiform layer of the primate retina: electron microscopy of golgi-impregnated cells. Phil Trans R Soc B 258(823):261–283

    Article  Google Scholar 

  21. 21.

    Kouyama N, Marshak DW (1992) Bipolar cells specific for blue cones in the macaque retina. J Neurosci 12(4):1233–1252

    PubMed  CAS  Google Scholar 

  22. 22.

    Kozaki T, Koga S, Toda N (2008) Effects of short wavelength control in polychromatic light sources on nocturnal melatonin secretion. Neurosci Lett 439(3):256–259

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Lewy AJ, Wehr TA, Goodwin FA, Newsome DA, Markey SP (1980) Light suppresses melatonin secretion in humans. Science 210(4475):1267–1269

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Lockley SW, Brainard GC, Czeisler CA (2003) High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab 88(9):4502–4505

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Lockley SW, Evans EE, Scheer FA, Brainard GC, Czeisler CA, Aeschbach D (2006) Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep 29(2):161–168

    PubMed  Google Scholar 

  26. 26.

    Maestroni GJ (2001) The immunotherapeutic potential of melatonin. Expert Opin Investig Drugs 10(3):467–476

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Mariani AP (1984) Bipolar cells in monkey retina selective for cones likely to be blue-sensitive. Nature 30(5955):184–186

    Article  Google Scholar 

  28. 28.

    Miller SC, Pandi-Perumal SR, Esquifino AI, Cardinali DP, Maestroni GJM (2006) The role of melatonin in immunoenhancement: potential application in cancer. Int J Exp Pathol 87(2):81–87

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Morita T, Tokura H (1996) Effects of lights of different color temperature on the nocturnal changes in core temperature and melatonin in humans. Appl Hum Sci 15(5):243–246

    Article  CAS  Google Scholar 

  30. 30.

    Nayak SK, Jegla T, Panda S (2007) Role of a novel photopigment, melanopsin, in behavioral adaptation to light. Cell Mol Life Sci 64(2):144–154

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Nelson R (1982) AII amacrine cells quicken the time course of rod signals in the cat retina. J Neurophysiol 47(5):928–947

    PubMed  CAS  Google Scholar 

  32. 32.

    Østergaard J, Hannibal J, Fahrenkrug J (2007) Synaptic contact between melanopsin-containing retinal ganglion cells and rod bipolar cells. Invest Ophthalmol Vis Sci 48(8):3812–3820

    PubMed  Article  Google Scholar 

  33. 33.

    Perez-Leon JA, Warren EJ, Allen CN, Robinson DW, Lane Brown R (2006) Synaptic inputs to retinal ganglion cells that set the circadian clock. Eur J Neurosci 24(4):1117–1123

    PubMed  Article  Google Scholar 

  34. 34.

    Poeggeler B, Saarela S, Reiter RJ et al (1994) Melatonin a highly potent endogenous radical scavenger and electron donor: new aspects of the oxidation chemistry of this indole accessed in vitro. Ann N Y Acad Sci 738:419–420

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Rea MS, Bullough JD, Figueiro MG (2001) Human melatonin suppression by light: a case for scotopic efficiency. Neurosci Lett 299(1–2):45–48

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Rea MS, Figueiro MG, Bullough JD, Bierman A (2005) A model of phototransduction by the human circadian system. Brain Res Rev 50(2):213–228

    PubMed  Article  Google Scholar 

  37. 37.

    Revell VL, Skene DJ (2007) Light-induced melatonin suppression in humans with polychromatic and monochromatic light. Chronobiol Int 24(6):1125–1137

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Revell VL, Arendt J, Terman M, Skene DJ (2006) Short-wavelength sensitivity of the human circadian system to phase-advancing light. J Biol Rhythms 20(3):270–272

    Article  Google Scholar 

  39. 39.

    Roorda A, Williams DR (1997) The arrangement of the three cone classes in the living human eye. Nature 397(6719):520–522

    Article  Google Scholar 

  40. 40.

    Sato M, Sakaguchi T, Morita T (2005) The effects of exposure in the morning to light of different color temperatures on the behavior of core temperature and melatonin secretion in humans. Biol Rhythm Res 36(4):287–292

    Article  CAS  Google Scholar 

  41. 41.

    Srinivasan V, Spence DW, Pandi-Perumal SR, Trakht I, Esquifino AI, Cardinali DP, Maestroni GJ (2008) Melatonin, environmental light, and breast cancer. Breast Cancer Res Treat 108(3):339–350

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Stevens RG, Blask DE, Brainard GC (2007) Meeting report: the role of environmental lighting and circadian disruption in cancer and other diseases. Environ Health Perspect 115(9):1357–1362

    PubMed  Article  Google Scholar 

  43. 43.

    Strettoi E, Raviola E, Dacheux RF (1992) Synaptic connections of the narrow-field, bistratified rod amacrine cell (AII) in the rabbit retina. J Comp Neurol 325(2):152–168

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Vaney DI (1994) Patterns of neuronal coupling in the retina. Prog Ret Eye Res 13:301–355

    Article  Google Scholar 

  45. 45.

    Wong KY, Dunn FA, Graham DM, Berson DM (2007) Synaptic influences on rat ganglion-cell photoreceptors. J Physiol 582(Pt 1):279–296

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the technical assistance from Associate Prof. X.X. Xu, the Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, China; logistical and editorial assistance from Prof. C.P. Zhang and Vice President Prof. C.Y. Li, School of Physics, Nankai University, China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tianhao Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meng, Y., He, Z., Yin, J. et al. Quantitative calculation of human melatonin suppression induced by inappropriate light at night. Med Biol Eng Comput 49, 1083–1088 (2011). https://doi.org/10.1007/s11517-011-0788-1

Download citation

Keywords

  • Light
  • Melatonin suppression
  • Algorithm
  • IpRGC
  • Rods
  • Cones