Skip to main content

Advertisement

Log in

Optimizing spatial filters for single-trial EEG classification via a discriminant extension to CSP: the Fisher criterion

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In this article, a new spatial filtering approach, called discriminant common spatial patterns (dCSP), is proposed for single-trial EEG classification. Unlike the conventional common spatial patterns (CSP) that is substantially a subspace decomposition technique, dCSP is intently designed for discriminant purpose. The basic idea of dCSP is to construct a Fisher-like criterion that extracts both between-class and within-class discriminant information. The classical CSP only considers separating class means, i.e., between-class scatter, as well as possible. In contrast, dCSP aims to maximize between-class scatter and meanwhile minimize within-class scatter. Computationally, dCSP is formulated as a generalized eigenvalue problem. Experiments on real EEG classification show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bashashati A, Fatourechi M, Ward RK, Birch GE (2007) A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J Neural Eng 4(2):R32–R57

    Article  PubMed  Google Scholar 

  2. Blankertz B, Müller K-R, Curio G, Vaughan TM, Schalk G, Wolpaw JR, Schlögl A, Neuper C, Pfurtscheller G, Hinterberger T, Schröder M, Birbaumer N (2004) The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans Biomed Eng 51(6):1044–1051

    Article  PubMed  Google Scholar 

  3. Blankertz B, Müller K-R, Krusienski DJ, Schalk G, Wolpaw JR, Schlögl A, Pfurtscheller G, Millán JR, Schröder M, Birbaumer N (2006) The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 14(2):153–159

    Article  PubMed  Google Scholar 

  4. Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller K-R (2008) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag 25(1):41–56

    Article  Google Scholar 

  5. Cabrera AF, Farina D, Dremstrup K (2010) Comparison of feature selection and classification methods for a brain-computer interface driven by non-motor imagery. Med Bio Eng Comput 48(2):123–132

    Article  Google Scholar 

  6. Dornhege G, Krauledat M, Müller K-R, Blankertz B (2007) General signal processing and machine learning tools for BCI. In: Toward brain-computer interfacing. MIT Press, Cambridge, MA, pp 207–233

  7. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New York

  8. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–188

    Article  Google Scholar 

  9. Guerrero-Mosquera C, Trigueros AM, Franco JI, Navia Vázquez Á (2010) New feature extraction approach for epileptic EEG signal detection using time-frequency distributions. Med Bio Eng Comput 48(4):321–330

    Article  Google Scholar 

  10. Kawanabe M, Vidaurre C, Blankertz B, Müller K-R (2009) A maxmin approach to optimize spatial filters for EEG single-trial classification. LNCS 5517:674–682

    Google Scholar 

  11. Koles ZJ, Lazar MS, Zhou SZ (1990) Spatial patterns underlying population differences in the background EEG. Brain Topogr 2:275–284

    Article  PubMed  CAS  Google Scholar 

  12. Lemm S, Blankertz B, Curio G, Müller K-R (2005) Spatio-spectral filters for improved classification of single trial EEG. IEEE Trans Biomed Eng 52(9):1541–1548

    Google Scholar 

  13. Li Y, Gao X, Gao S (2004) Classification of single-trial electroencephalogram during finger movement. IEEE Trans Biomed Eng 51(6):1019–1025

    Article  PubMed  Google Scholar 

  14. Liao X, Yao D, Wu D, Li C (2007) Combining spatial filters for the classification of single-trial EEG in a finger movement task. IEEE Trans Biomed Eng 54(5):821–831

    Article  PubMed  Google Scholar 

  15. Müller-Gerking J, Pfurtscheller G, Flyvbjerg H (1999) Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin Neurophys 110(5):787–798

    Google Scholar 

  16. Parra LC, Spence CD, Gerson AD, Sajda P (2005) Recipes for linear analysis of EEG. Neuroimage 28(2):326–341

    Article  PubMed  Google Scholar 

  17. Ramoser H, Müller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8(4):441–446

    Article  PubMed  CAS  Google Scholar 

  18. Sun S, Zhang C (2006) Adaptive feature extraction for EEG signal classification. Med Bio Eng Comput 44(10):931–935

    Article  Google Scholar 

  19. Wang Y, Zhang Z, Li Y, Gao X, Gao S, Yang F (2004) BCI competition 2003-data set iv: an algorithm based on CSSD and FDA for classifying single-trial EEG. IEEE Trans Biomed Eng 51(6):1081–1086

    Article  PubMed  Google Scholar 

  20. Wang H, Zheng W (2008) Local temporal common spatial patterns for robust single-trial EEG classification. IEEE Trans Neural Syst Rehabil Eng 16(2):131–139

    Article  PubMed  Google Scholar 

  21. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to express his gratitude to the anonymous referees for valuable suggestions. This work was supported in part by the National Natural Science Foundation of China under grants 61075009, 60803059 and 10871001, the Qing Lan Project, and the Fund for the Program of Excellent Young Teachers at Southeast University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H. Optimizing spatial filters for single-trial EEG classification via a discriminant extension to CSP: the Fisher criterion. Med Biol Eng Comput 49, 997–1001 (2011). https://doi.org/10.1007/s11517-011-0766-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0766-7

Keywords

Navigation