Skip to main content

Mathematical modeling of stem cell proliferation

Abstract

The mathematical models prevalently used to represent stem cell proliferation do not have the level of accuracy that might be desired. The hyperbolastic growth models promise a greater degree of precision in representing data of stem cell proliferation. The hyperbolastic growth model H3 is applied to experimental data in both embryonic stem cells and adult mesenchymal stem cells. In the embryonic stem cells the results are compared with other popular models, including the Deasy model, which is used prevalently for stem cell growth. In the case of modelling adult mesenchymal stem cells, H3 is also successfully applied to describe the proliferative index. We demonstrated that H3 can accurately represent the dynamics of stem cell proliferation for both embryonic and adult mesenchymal stem cells. We also recognize the importance of additional factors, such as cytokines, in determining the rate of growth. We propose the question of how to extend H3 to a multivariable model that can include the influence of growth factors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ahmadi H, Mottaghitalab M (2007) Hyperbolastic models as a new powerful tool to describe broiler growth kinetics. Poult Sci 86(11):2461–2465

    PubMed  Article  CAS  Google Scholar 

  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  3. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B (2006) Aging of mesenchymal stem cells in vitro. BMC Cell Biol 7:14. doi:10.1186/1471-2121/7/14

    PubMed  Article  Google Scholar 

  4. Bursac Z, Tabatabai M, Williams DK (2006) Non-linear hyperbolastic growth models and applications in craniofacial and stem cell growth. In: 2005 proceedings of the American statistical association biometrics section [CD-ROM]. American Statistical Association, Alexandria, pp 190–197

  5. Chung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP, Monuki ES, Jeon NL (2005) Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5(4):401–406

    PubMed  Article  CAS  Google Scholar 

  6. Cowan R, Morris VB (1987) Cell population dynamics during the differentiative phase of tissue development. J Theor Biol 122(2):205–224

    Article  Google Scholar 

  7. Deasy BM, Qu-Peterson Z, Greenberger JS, Huard J (2002) Mechanisms of muscle stem cell expansion with cytokines. Stem Cells 20(1):50–60

    PubMed  Article  CAS  Google Scholar 

  8. Deasy BM, Jankowski RJ, Payne TR, Cao B, Goff JP, Greenberger JS, Huard J (2003) Modeling stem cell population growth: incorporating terms for proliferative heterogeneity. Stem Cells 21(5):536–545

    PubMed  Article  CAS  Google Scholar 

  9. Eiselleova L, Matulaka K, Kriz V, Kunova M, Schmidtova Z, Neradil J, Tichy B, Dvorakova D, Pospisilova S, Hampl A, Dvorak P (2009) A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem Cells 27(8):1847–1857

    PubMed  Article  CAS  Google Scholar 

  10. Gangil V, Hauzeur JP (2005) Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. Surgical technique. J Bone Joint Surg Am 87(Suppl 1.1):106–112

    Google Scholar 

  11. Gangil V, Toungouz M, Hauzeur JP (2005) Stem cell therapy for osteonecrosis of the femoral head. Expert Opin Biol Ther 5(4):437–442

    Article  Google Scholar 

  12. Grayson WL, Zhao F, Bunnell B, Ma T (2007) Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 358(3):948–953

    PubMed  Article  CAS  Google Scholar 

  13. Heo JS, Lee YJ, Han HJ (2006) EGF stimulates proliferation of mouse embryonic stem cells: involvement of CA2+ influx and p44/42 MAPKs. Am J Physiol Cell Physiol 290(1):123–133. doi:10.1152/ajpcell.00142.2005

    Article  Google Scholar 

  14. Hernigou P, Beaujean F (2002) Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res 2002(405):14–23

    Article  Google Scholar 

  15. Jankowski RJ, Deasy BM, Cao B, Gates C, Huard J (2002) The role of CD34 expression and cellular fusion in the regeneration capacity of myogenic progenitor cells. J Cell Sci 115(Pt 22):4361–4372

    PubMed  Article  CAS  Google Scholar 

  16. Khoo JLM, McQuade LR, Smith MSR, Lees JG, Sidhu KS, Tuch BE (2005) Growth and differentiation of embryoid bodies derived from human embryonic stem cells: effect of glucose and basic fibroblast growth factor. Biol Reprod 73(6):1147–1156

    PubMed  Article  CAS  Google Scholar 

  17. Lemon G, Waters SL, Rose FR, King JR (2007) Mathematical modeling of human mesenchymal stem cell proliferation and differentiation inside artificial porous scaffolds. J Theor Biol 249(3):543–553

    PubMed  Article  CAS  Google Scholar 

  18. Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631

    PubMed  Article  CAS  Google Scholar 

  19. Loeffler M, Wichman HE (1980) A comprehensive mathematical model of stem cell proliferation which reproduces most of the published experimental results. Cell Prolif 13(5):543–561

    Article  CAS  Google Scholar 

  20. Narbonne P, Roy R (2006) Regulation of germline stem cell proliferation downstream of nutrient sensing. Cell Div 1:29. doi:10.1186/1747-1028-1-29

    PubMed  Article  Google Scholar 

  21. Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci 97(21):11307–11312

    PubMed  Article  CAS  Google Scholar 

  22. Sherley JL, Stadler PB, Stadler JS (1995) A quantitative method for the analysis of mammalian cell proliferation in culture in terms of dividing and non-dividing cells. Cell Prolif 28(3):137–144

    PubMed  Article  CAS  Google Scholar 

  23. Tabatabai M, Williams DK, Bursac Z (2005) Hyperbolastic growth models: theory and application. Theor Biol Med Model 2(1):1–13. doi:10.1186/1742-4682-2-14

    Article  Google Scholar 

  24. Väänänen HK (2005) Mesenchymal stem cells. Ann Med 37(7):469–479

    PubMed  Article  Google Scholar 

  25. Wang BL, Sun W, Shi ZC, Lou JN, Zhang NF, Shi SH, Guo WS, Cheng LM, Ye LY, Zhang WJ, Li ZR (2008) Decreased proliferation of mesenchymal stem cells in corticosteroid-induced osteonecrosis of femoral head. Orthopedics 31(5):444

    PubMed  Google Scholar 

  26. Watt FM, Hogan BLM (2000) Out of Eden: stem cells and their niches. Science 287(5457):1427–1430

    PubMed  Article  CAS  Google Scholar 

  27. NIH data. http://stemcells.nih.gov/research/NIHresearch/scunit/growthcurves.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne M. Eby.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tabatabai, M.A., Bursac, Z., Eby, W.M. et al. Mathematical modeling of stem cell proliferation. Med Biol Eng Comput 49, 253–262 (2011). https://doi.org/10.1007/s11517-010-0686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0686-y

Keywords

  • Embryonic stem cells
  • Adult stem cells
  • Hyperbolastic growth models
  • Proliferative Index
  • Cytokines