Parameter estimation of the copernicus decompression model with venous gas emboli in human divers

Abstract

Decompression Sickness (DCS) may occur when divers decompress from a hyperbaric environment. To prevent this, decompression procedures are used to get safely back to the surface. The models whose procedures are calculated from, are traditionally validated using clinical symptoms as an endpoint. However, DCS is an uncommon phenomenon and the wide variation in individual response to decompression stress is poorly understood. And generally, using clinical examination alone for validation is disadvantageous from a modeling perspective. Currently, the only objective and quantitative measure of decompression stress is Venous Gas Emboli (VGE), measured by either ultrasonic imaging or Doppler. VGE has been shown to be statistically correlated with DCS, and is now widely used in science to evaluate decompression stress from a dive. Until recently no mathematical model has existed to predict VGE from a dive, which motivated the development of the Copernicus model. The present article compiles a selection experimental dives and field data containing computer recorded depth profiles associated with ultrasound measurements of VGE. It describes a parameter estimation problem to fit the model with these data. A total of 185 square bounce dives from DCIEM, Canada, 188 recreational dives with a mix of single, repetitive and multi-day exposures from DAN USA and 84 experimentally designed decompression dives from Split Croatia were used, giving a total of 457 dives. Five selected parameters in the Copernicus bubble model were assigned for estimation and a non-linear optimization problem was formalized with a weighted least square cost function. A bias factor to the DCIEM chamber dives was also included. A Quasi-Newton algorithm (BFGS) from the TOMLAB numerical package solved the problem which was proved to be convex. With the parameter set presented in this article, Copernicus can be implemented in any programming language to estimate VGE from an air dive.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    The notation used in the article is \(\tilde{}\) (tilde) for measurements and \(\hat{}\) (hat) for model estimates.

References

  1. 1.

    Bakovic D, Glavas D, Palada I, Breskovic T, Fabijanic D, Obad A, Valic Z, Brubakk AO, Dujic Z (2008) High-grade bubbles in left and right heart in an asymptomatic diver at rest after surfacing. Aviat Space Environ Med 79(6):626–8

    Article  PubMed  Google Scholar 

  2. 2.

    Brubakk AO, Eftedal OS (1999) Evaluation of reverse dive profiles. In: Lang MA, Lehner CE (eds) Reverse dive profiles workshop. Smithsonian Institution, Washington, DC, pp 111–121

    Google Scholar 

  3. 3.

    Bühlmann AA (1984) Decompression–decompression sickness. Springer-Verlag, Berlin, New York

    Google Scholar 

  4. 4.

    Carturan D, Boussuges A, Burnet H, Fondarai J, Vanuxem P, Gardette B (1999) Circulating venous bubbles in recreational diving: relationships with age, weight, maximal oxygen uptake and body fat percentage. Int J Sports Med 20(6):410–14

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Conkin J, Powell MR, Foster PP, Waligora JM (1998) Information about venous gas emboli improves prediction of hypobaric decompression sickness. Aviat Space Environ Med 69(1):8–16

    CAS  PubMed  Google Scholar 

  6. 6.

    Doolette DJ, Upton RN, Grant C (2005) Countercurrent compartmental models describe hind limb skeletal muscle helium kinetics at resting and low blood flows in sheep. Acta Physiol Scand 185(2):109–21

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Dujic Z, Palada I, Valic Z, Duplancic D, Obad A, U UW, Brubakk AO (2006) Exogenous nitric oxide and bubble formation in divers. Med Sci Sports Exerc 38(8):1432–5

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Eftedal O, Brubakk AO (1991) A method for detecting intravascular gas bubbles using 2d ultrasonic scanning and computer-based image processing. In: Michalodimitrakis E (ed) Proceedings of the XVII annual meeting EUBS. EUBS, Heraklion, Crete, pp. 311–316

  9. 9.

    Eftedal O, Brubakk AO (1997) Agreement between trained and untrained observers in grading intravascular bubble signals in ultrasonic images. Undersea Hyperb Med 24(4):293–99

    CAS  PubMed  Google Scholar 

  10. 10.

    Eftedal OS, Lydersen S, Brubakk AO (2007a) The relationship between venous gas bubbles and adverse effects of decompression after air dives. Undersea Hyperb Med 34(2):99–105

    CAS  PubMed  Google Scholar 

  11. 11.

    Eftedal OS, Tjelmeland H, Brubakk AO (2007b) Validation of decompression procedures based on detection of venous gas bubbles: a bayesian approach. Aviat Space Environ Med 78(2):94–9

    PubMed  Google Scholar 

  12. 12.

    Engel GL (1977) The need for a new medical model: a challenge for biomedicine. Science 196:129–36

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Gernhardt ML (1991) Developement and evaluation of a decompression stress index based on tissue bubble dynamics. Ph.D. thesis, University of Pennsylvania

  14. 14.

    Gürmen NM (2001) Simulation of dynamic bubble spectra in tissues. IEEE Trans Biomed Eng 48(2):185–193

    Article  PubMed  Google Scholar 

  15. 15.

    Gutvik CR, Brubakk AO (2009) Copernicus—a dynamic 2-phase model for vascular bubble formation during decompression of divers. IEEE Trans Biomed Eng 55(3):884–89

    Article  Google Scholar 

  16. 16.

    Gutvik CR, Møllerløkken A, Brubakk AO (2007) Difference in bubble formation using deep stops is depend on bottom time. Eur J Underw Hyperb Med 8(3):42

    Google Scholar 

  17. 17.

    Hemingway R, Baker EC (1984) V-planner, V3.81. http://www.v-planner.co.

  18. 18.

    Hofwegen K, Fjelsten P (2007) GAP-software, V2.3. http://www.gap-software.co.

  19. 19.

    Holmström K (1999) The TOMLAB optimization environment in Matlab. Adv Model Optim 1(1):47–69

    Google Scholar 

  20. 20.

    Hrncir E, Rosina J (1997) Surface tension of blood. Physiol Res 46(4):319–21

    CAS  PubMed  Google Scholar 

  21. 21.

    Kisman KE, Masurel G, LaGrue D (1978) Evaluation de la qualite d’une decompression basee sur la detection ultrasonore de bulles. Med Aéro Spat Med Sub Hyp XVII:293–97

    Google Scholar 

  22. 22.

    Langø T, Mørland T, Brubakk AO (1996) Diffusion coefficients and solubility coefficients for gases in biological fluids and tissues: a review. Undersea Hyperb Med 23(4):247–72

    PubMed  Google Scholar 

  23. 23.

    Lundin G (1960) Nitrogen elimination from the tissues during oxygen breathing and its relationship to the fat: muscle ratio and the localization of bends. J Physiol 152:167–75

    CAS  PubMed  Google Scholar 

  24. 24.

    Maton A, Hopkins J, McLaughlin CW, Johnson S, Warner MQ, LaHart D, Wright JD (1993) Human biology and health. Prentice Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  25. 25.

    McArdle WD, Katch FI, Katch VL (2000) Essentials of exercise physiology, 2nd edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  26. 26.

    Naval Sea Systems Command (2007) U.S. navy diving manual, 5th edn. AquaPress Publishing, Philadelphia

  27. 27.

    Nishi RY, Brubakk AO, Eftedal O (2003) Bubble detection. In: Brubakk AO, Neuman TS (eds) Bennett and Elliot‘s physiology and medicine of diving, 5th edn., Chap. 10.3. Saunders, London, pp 501–529

    Google Scholar 

  28. 28.

    Sawatzky KD (1991) The relationship between intravascular doppler-detected gas bubbles and decompression sickness after bounce diving in humans. Master’s thesis, York University, Toronto, Ontario

  29. 29.

    Spencer MP (1976) Decompression limits for compressed air determined by ultrasonically detected blood bubbles. J Appl Physiol 40(2):229–35

    CAS  PubMed  Google Scholar 

  30. 30.

    Tikuisis P, Ward CA, Venter RD (1983) Bubble evolution in a stirred volume of liquid closed to mass transport. J Appl Physiol 54:1–9

    Article  CAS  Google Scholar 

  31. 31.

    Weathersby PK, Survanshi SS, Nishi RY (1990) Relative decompression risk of dry and wet chamber air dives. Undersea Biomed Res 17(4):333–52

    CAS  PubMed  Google Scholar 

  32. 32.

    Yount DE, Hoffmann DC (1986) On the use of a bubble formation model to calculate diving tables. Aviat Space Environ Med 57:149–156

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study has been supported by UWATEC AG, Switzerland and by the Norwegian Petroleum Directorate, Norsk Hydro, Esso Norge and Statoil under the “dive contingency contract” (no 4600002328) with Norwegian Underwater Intervention (NUI). Thanks to R. Y. Nishi for providing the data set from DCIEM on the square profile dives.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christian R. Gutvik.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gutvik, C.R., Dunford, R.G., Dujic, Z. et al. Parameter estimation of the copernicus decompression model with venous gas emboli in human divers. Med Biol Eng Comput 48, 625–636 (2010). https://doi.org/10.1007/s11517-010-0601-6

Download citation

Keywords

  • Diving
  • Vascular bubbles
  • Nonlinear optimization
  • Ultrasound
  • Decompression sickness