Advertisement

Medical & Biological Engineering & Computing

, Volume 46, Issue 8, pp 767–777 | Cite as

A hybrid algorithm for solving the EEG inverse problem from spatio-temporal EEG data

  • Guillaume Crevecoeur
  • Hans Hallez
  • Peter Van Hese
  • Yves D’Asseler
  • Luc Dupré
  • Rik Van de Walle
Original Article

Abstract

Epilepsy is a neurological disorder caused by intense electrical activity in the brain. The electrical activity, which can be modelled through the superposition of several electrical dipoles, can be determined in a non-invasive way by analysing the electro-encephalogram. This source localization requires the solution of an inverse problem. Locally convergent optimization algorithms may be trapped in local solutions and when using global optimization techniques, the computational effort can become expensive. Fast recovery of the electrical sources becomes difficult that way. Therefore, there is a need to solve the inverse problem in an accurate and fast way. This paper performs the localization of multiple dipoles using a global–local hybrid algorithm. Global convergence is guaranteed by using space mapping techniques and independent component analysis in a computationally efficient way. The accuracy is locally obtained by using the Recursively Applied and Projected-MUltiple Signal Classification (RAP-MUSIC) algorithm. When using this hybrid algorithm, a four times faster solution is obtained.

Keywords

EEG source analysis Space mapping Inverse problems optimization Signal classification 

Notes

Acknowledgments

The authors would like to thank the “Bijzonder Onderzoeksfonds” (B.O.F.) of the Ghent University.

References

  1. 1.
    Bai X, He B (2006) Estimation of number of independent brain electric sources from the scalp EEGs. IEEE Trans Biomed Eng 53:1883–1892CrossRefGoogle Scholar
  2. 2.
    Bandler J, Biernacki R, Chen S, Grobelny P, Hemmers H (1994) Space mapping technique for electromagnetic optimization. IEEE Trans Microw Theory Technol 42:2536–2544CrossRefGoogle Scholar
  3. 3.
    Bandler J, Cheng Q, Dakroury S, Mohamed A, Bakr M, Madsen K, Søndergaard J (2004) Space mapping: the state of the art. IEEE Trans Microw Theory Technol 52:337–361CrossRefGoogle Scholar
  4. 4.
    Barr R, Pilkington T, Boineau J, Spach M (1966) Determining surface potentials from current dipoles, with application to electrocardiography. IEEE Trans Biomed Eng 23:88–92Google Scholar
  5. 5.
    Barrett R, Berry M, Chan T, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C, der Vorst H (1994) Templates for the solution of linear systems. SIAM, PhiladelphiaGoogle Scholar
  6. 6.
    Crevecoeur G, Hallez H, Van Hese P, D’Asseler Y, Dupré L, Van de Walle R (2008) EEG source analysis using space mapping techniques. J Comput Appl Math 215:339–347 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Crevecoeur G, Hallez H, Van Hese P, D’Asseler Y, Dupré L, Van de Walle R (2007) Influence of noise on EEG source analysis using space mapping techniques. Int J Appl Electromagn Mech 25:383–387Google Scholar
  8. 8.
    Cuffin B (1995) A method for localizing EEG sources in realistic head models. IEEE Trans Biomed Eng 42:68–71CrossRefGoogle Scholar
  9. 9.
    de Munck J, Van Dijk B, Spekreijse H (1988) Mathematical dipoles are adequate to describe realistic generators of human brain activity. IEEE Trans Biomed Eng 35:960–965CrossRefGoogle Scholar
  10. 10.
    Huang M, Aine C, Supek S, Best E, Ranken D, Flynn E (1998) Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography. Electroenceph Clin Neurophysiol 108:32–44CrossRefGoogle Scholar
  11. 11.
    Jiang T, Luo A, Li X, Kruggel F (2003) A Comparative Study of global optimisation approaches to MEG source localization. Int J Comput Math 80:305–324zbMATHCrossRefGoogle Scholar
  12. 12.
    Kaytal B, Schimpf P (2004) Multiple current dipole estimation in a realistic head model using R-MUSIC. Proc IEEE EMBS 26:829–832Google Scholar
  13. 13.
    Khosla D,Singh M, Don M (1997) Spatio-temporal EEG source localization using simulated annealing. IEEE Trans Biomed Eng 44:1075–1091CrossRefGoogle Scholar
  14. 14.
    Knösche T, Berends E, Jagers H, Peters M (1998) Determining the number of independent sources of the EEG: a simulation study on information criteria. Brain Topogr 11:111–124CrossRefGoogle Scholar
  15. 15.
    Liu H, Schimpf P (2006) Efficient localization of synchronous EEG source activities using a modified RAP-MUSIC algorithm. IEEE Trans Biomed Eng 53:652–661CrossRefGoogle Scholar
  16. 16.
    Mosher J, Leahy R (1999) Source localization using recursively applied and projected (RAP) MUSIC. IEEE Trans Signal Process 47:332–340CrossRefGoogle Scholar
  17. 17.
    Mosher J, Lewis P, Leahy R (1992) Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng 39:541–557CrossRefGoogle Scholar
  18. 18.
    Pascual-Marqui R, Michel C, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65CrossRefGoogle Scholar
  19. 19.
    Roth B, Ko D, von Albertini Carletti I, Scaffidi D, Sato S (1997) Dipole localization in patients with epilepsy using the realistically shaped head model. Electroencephalogr Clin Neuroph 102:159–166CrossRefGoogle Scholar
  20. 20.
    Rush S, Driscoll D (1969) EEG electrode sensitivity—an application of reciprocity. IEEE Trans Biomed Eng 16:15–22CrossRefGoogle Scholar
  21. 21.
    Salu Y, Cohen L,Rose D, Sato S, Kufta C, Hallett M (1990) An improved method for localizing electric brain dipoles. IEEE Trans Biomed Eng 37:699–705CrossRefGoogle Scholar
  22. 22.
    Thakor N, Tong B (2004) Advances in quantitative electroencephalogram analysis methods. Annu Rev Biomed Eng 6:453–495CrossRefGoogle Scholar
  23. 23.
    Van Hoey G, De Clercq J, Vanrumste B, Van de Walle R, D’Havé M, Lemahieu I, Boon P (2000) EEG dipole source localization using artificial neural networks. Phys Med Biol 45:997–1011CrossRefGoogle Scholar
  24. 24.
    Vanrumste B,Van Hoey G, Van de Walle R, D’Havé M, Lemahieu I, Boon P (2001) The validation of the finite difference method and reciprocity for solving the inverse problem in EEG dipole source analysis. Brain Topogr 14:83–92CrossRefGoogle Scholar
  25. 25.
    Vigario R, Srel J, Jousmki V, Hmlinen M, Oja E (2000) Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans Biomed Eng 47:589–593CrossRefGoogle Scholar
  26. 26.
    Wax M, Kailath T (1985) Detection of signals by information theoretic criteria. IEEE Trans Acoust Speech Signal Process 33:387–392CrossRefMathSciNetGoogle Scholar
  27. 27.
    Zhang Y, van Drongelen W, He B (2006) Estimation of in vivo brain-to-skull conductivity ratio in humans. Appl Phys Lett 89:223903CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2008

Authors and Affiliations

  • Guillaume Crevecoeur
    • 1
  • Hans Hallez
    • 2
  • Peter Van Hese
    • 2
  • Yves D’Asseler
    • 2
  • Luc Dupré
    • 1
  • Rik Van de Walle
    • 2
  1. 1.Department of Electrical Energy, Systems and AutomationGhent UniversityGhentBelgium
  2. 2.Department of Electronics and Information SystemsGhent UniversityGhentBelgium

Personalised recommendations