Skip to main content
Log in

Effect of marker cluster design on the accuracy of human movement analysis using stereophotogrammetry

  • Technical Note
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

This paper presents a new, simple model to evaluate the instrumental random errors in kinematic analysis of human movements using stereophotogrammetry. By means of equations analogous to that relate linear or angular momentum with linear or angular velocities, a direct measurement of instantaneous motion can be made without previous finite displacement analysis. Single explicit expressions can be obtained to evaluate the influence of instrumental random errors in the accuracy of the kinematic variables. From these expressions, some conclusions about the effect of marker cluster design on the experimental errors are obtained. An experiment has been carried out in order to validate the proposed technique and to assess the experimental errors in linear and angular velocity measurement and its influence in instantaneous helical axis determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Andriacchi TP, Alexander EJ (2000) Studies of human locomotion: past, present and future. J Biomech 33:1217–1224. DOI 10.1016/S0021-9290(00)00061-0

    Google Scholar 

  2. Angeles J (1986) Automatic computation of the screw parameters of rigid-body motions. Part II: infinitesimally-separated positions. J Dyn Syst Meas Control Trans ASME 108:39–43

    Article  MATH  Google Scholar 

  3. Cappozzo A, Della Croce U, Leardini A, Chiari L (2005) Human movement analysis using stereophotogrammetry. Part 1: theoretical background. Gait Posture 21:186–196. DOI 10.1016/j.gaitpost.2004.01.010

    Google Scholar 

  4. Cerveri P, Pedotti A, Ferrigno G (2005) Kinematical models to reduce the effect of skin artifacts on marker-based human motion estimation. J Biomech 38:2228–2236. DOI 10.1016/j.jbiomech.2004.09.032

    Google Scholar 

  5. Challis JH (1995) A procedure for determining rigid body transformation parameters. J Biomech 28:733–737. DOI 10.1016/0021-9290(94)00116-L

    Google Scholar 

  6. Chiari L, Della Croce U, Leardini A, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 2: instrumental errors. Gait Posture 21:197–211. DOI 10.1016/j.gaitpost.2004.04.004

    Google Scholar 

  7. Leardini A, Chiari L, Della Croce U, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture, 21:212–225 DOI. 10.1016/j.gaitpost.2004.05.002

    Google Scholar 

  8. Moore ST, Hirasaki E, Raphan T, Cohen B (2005) Instantaneous rotation axes during active head movements. J Vestib Res 15:73–80 PMID: 15951621

    Google Scholar 

  9. Page A, Candelas P, Belmar F (2006) Application of video photogrammetry to analyse mechanical systems in the undergraduate physics laboratory. Eur J Phys 27:647–655. DOI 10.1088/0143-0807/27/3/017

    Google Scholar 

  10. Page A, Candelas P, Belmar F (2006) On the use of local fitting techniques for the analysis of physical dynamic systems. Eur J Phys 27:273–279. DOI 10.1088/0143-0807/27/2/010

    Google Scholar 

  11. Ramsey DK, Wretenberg PF (1999) Biomechanics of the knee: methodological considerations in the in vivo kinematic analysis of the tibiofemoral and patellofemoral joint. Clin Biomech 14:595–611. DOI 10.1016/S0268-0033(99)00015-7

    Google Scholar 

  12. Shiflett GR, Laub AJ (1995) The analysis of rigid body motion from measured data. J Dyn Syst Meas Control, Trans ASME 117:578–584

    MATH  Google Scholar 

  13. Sommer HJ (1992). Determination of first and second order instant screw parameters from landmark trajectories. J Mech Des 114:274–282

    Article  Google Scholar 

  14. Spoor CW (1984) Explanation, verification and application of helical-axis error propagation formulas. Hum Movement Sci 3:95–117. DOI 10.1016/0167-9457(84)90007-1

    Google Scholar 

  15. Söderkvist I, Wedin PA (1993) Determining the movements of the skeleton using well-configured markers. J Biomech 26:1473–1477. DOI 10.1016/0021-9290(93)90098-Y

    Google Scholar 

  16. Valstar ER, Vrooman HA, Toksvig-Larsen S, Ryd L, Nelissen RGHH (2000) Digital automated RSA compared to manually operated RSA. J Biomec 33:1593–1599. DOI 10.1016/S0021-9290(00)00138-X

    Google Scholar 

  17. Veldpaus FE, Woltring HJ, Dortmans JMG (1988) A least-squares algorithm for the equiform transformation from spatial marker co-ordinates. J Biomech 21:45–54. DOI 10.1016/0021-9290(88)90190-X

    Google Scholar 

  18. Vithani AR, Gupta KC (2004) Estimation of object kinematics from point data. J Mech Des 126:16–21

    Article  Google Scholar 

  19. Woltring HJ, Huiskes R, De Lange A, Veldpaus FE (1985) Finite centroid and helical axis estimation from noisy landmark measurements in the study of human joint kinematics. J Biomech 18:379–389. DOI 10.1016/0021-9290(85)90293-3

    Google Scholar 

  20. Woltring HJ, Long K, Osterbauer PJ, Fuhr AW (1994) Instantaneous helical axis estimation from 3-D video data in neck kinematics for whiplash diagnostics. J Biomech 27:1415–1432. DOI 10.1016/0021-9290(94)90192-9

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Government grant DPI2003-07883-C02-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Page.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, A., De Rosario, H., Mata, V. et al. Effect of marker cluster design on the accuracy of human movement analysis using stereophotogrammetry. Med Bio Eng Comput 44, 1113–1119 (2006). https://doi.org/10.1007/s11517-006-0124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-006-0124-3

Keywords

Navigation