Advertisement

Frontiers in Biology

, Volume 13, Issue 5, pp 327–341 | Cite as

The journey of gut microbiome – An introduction and its influence on metabolic disorders

  • Ankita Chattopadhyay
  • S. MythiliEmail author
Review

Abstract

Background

Metabolic disorders such as Obesity, Diabetes Type 2 (T2DM) and Inflammatory Bowel Diseases (IBD) are the most prevalent globally. Recently, there has been a surge in the evidence indicating the correlation between the intestinal microbiota and development of these metabolic conditions apart from predisposing genetic and epigenetic factors. Gut microbiome is pivotal in controlling the host metabolism and physiology. But imbalances in the microbiota patterns lead to these disorders via several pathways. Animal and human studies so far have concentrated mostly on metagenomics for the whole microbiome characterization to understand how microbiome supports health in general. However, the accurate mechanisms connecting the metabolic disorders and alterations in gut microbial composition in host and the metabolites employed by the microorganisms in regulating the metabolic disorders is still vague.

Objective

The review delineates the latest findings about the role of gut microbiome to the pathophysiology of Obesity, IBD and Diabetes Mellitus. Here, we provide a brief introduction to the gut microbiome followed by the current therapeutic interventions in restoration of the disrupted intestinal microbiota.

Methods

A methodical PubMed search was performed using keywords like “gut microbiome,” “obesity,” “diabetes,” “IBD,” and “metabolic syndromes.” All significant and latest publications up to January 2018 were accounted for the review.

Results

Out of the 93 articles cited, 63 articles focused on the gut microbiota association to these disorders. The rest 18 literature outlines the therapeutic approaches in maintaining the gut homeostasis using probiotics, prebiotics and faecal microbial transplant (FMT).

Conclusion

Metabolic disorders have intricate etiology and thus a lucid understanding of the complex host-microbiome inter-relationships will open avenues to novel therapeutics for the diagnosis, prevention and treatment of the metabolic diseases.

Keywords

gut microbiome metabolic disorders obesity diabetes type 2 inflammatorybowel diseases probiotics prebiotics FMT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aas J, Gessert C E, Bakken J S (2003). Recurrent Clostridium difficile colitis: case series involving 18 patients treated with donor stool administered via a nasogastric tube. Clin Infect Dis, 36(5): 580–585PubMedGoogle Scholar
  2. Adlerberth I, Wold A E (2009). Establishment of the gut microbiota in Western infants. Acta Paediatr, 98(2): 229–238PubMedGoogle Scholar
  3. Allen J M, Mailing L J, Niemiro G M, Moore R, Cook M D, White B A, Holscher H D, Woods J A(2018). Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Med Sci Sports Exerc, 50(4): 747–757.doi: https://doi.org/10.1249/MSS.0000000000001495 PubMedGoogle Scholar
  4. Aw W, Fukuda S (2018). Understanding the role of the gut ecosystem in diabetes mellitus. J Diabetes Investig, 9(1): 5–12PubMedGoogle Scholar
  5. Bäckhed F, Ding H, Wang T, Hooper L V, Koh G Y, Nagy A, Semenkovich C F, Gordon J I (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA, 101(44): 15718–15723PubMedGoogle Scholar
  6. Bäckhed F, Ley R E, Sonnenburg J L, Peterson D A, Gordon J I (2005). Host-bacterial mutualism in the human intestine. Science, 307(5717): 1915–1920PubMedGoogle Scholar
  7. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, Khan M T, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D, Lee Y S, Kotowska D, Colding C, Tremaroli V, Yin Y, Bergman S, Xu X, Madsen L, Kristiansen K, Dahlgren J, Wang J (2015). Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe, 17(5):690–703doi: https://doi.org/10.1016/j.chom.2015.05.012 PubMedGoogle Scholar
  8. Barlow G M, Yu A, Mathur R (2015). Role of the Gut Microbiome in Obesity and Diabetes Mellitus. Nutr Clin Pract, 30(6): 787–797PubMedGoogle Scholar
  9. Bevins C L, Salzman N H (2011). Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol, 9(5): 356–368PubMedGoogle Scholar
  10. Boulangé C L, Neves A L, Chilloux J, Nicholson J K, Dumas M E (2016). Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med, 8(1): 1–12Google Scholar
  11. Brunkwall L, Orho-Melander M (2017). The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia, 60(6): 943–951PubMedPubMedCentralGoogle Scholar
  12. Calças N, Mendonça L, Perez L, Ferreira R, Elisei C, Castro A (2017). Diet as a Therapy for Gut Dysbacteriosis. JSM Biochem Mol Biol, 4(1): 102, pp. 1–6.Google Scholar
  13. Cani P D (2013). Gut microbiota and obesity: lessons from the microbiome. Brief Funct Genomics, 12(4): 381–387PubMedGoogle Scholar
  14. Cani P D, Delzenne NM (2009). The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des, 15(13): 1546–1558Google Scholar
  15. Cani P D, Knauf C, Iglesias M A, Drucker D J, Delzenne N M, Burcelin R (2006). Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes, 55(5): 1484–1490PubMedGoogle Scholar
  16. Cani P D, Lecourt E, Dewulf E M, Sohet F M, Pachikian B D, Naslain D, De Backer F, Neyrinck A M, Delzenne N M (2009). Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr, 90(5): 1236–1243PubMedGoogle Scholar
  17. Cani P D, Neyrinck A M, Fava F, Knauf C, Burcelin R G, Tuohy K M, Gibson G R, Delzenne N M (2007). Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 50(11): 2374–2383PubMedGoogle Scholar
  18. Catalán V, Gómez-Ambrosi J, Ramirez B, Rotellar F, Pastor C, Silva C, Rodríguez A, Gil M J, Cienfuegos J A, Frühbeck G (2007). Proinflammatory cytokines in obesity: impact of type 2 diabetes mellitus and gastric bypass. Obes Surg, 17(11): 1464–1474PubMedGoogle Scholar
  19. Cénit M C, Matzaraki V, Tigchelaar E F, Zhernakova A (2014). Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochim Biophys Acta, 1842(10): 1981–1992PubMedGoogle Scholar
  20. Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O’Connor M, Harnedy N, O’Connor K, Henry C, O’Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O’Toole PW(2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA, 108(Suppl 1): 4586–4591PubMedGoogle Scholar
  21. Clarke S F, Murphy E F, Nilaweera K, Ross P R, Shanahan F, O’Toole P W, Cotter P D (2012). The gut microbiota and its relationship to diet and obesity. Gut Microbes, 3(3): 186–202PubMedPubMedCentralGoogle Scholar
  22. Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A, Haesler R, Huot L, Grandjean T, Bressenot A, Delanoye-Crespin A, Gaillot O, Schreiber S, Lemoine Y, Ryffel B, Hot D, Nùñez G, Chen G, Rosenstiel P, Chamaillard M (2013). NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest, 123(2): 700–711PubMedPubMedCentralGoogle Scholar
  23. D’Argenio V, Salvatore F (2015). The role of the gut microbiome in the healthy adult status. Clin Chim Acta, 451(Pt A): 97–102PubMedGoogle Scholar
  24. D’Aversa F, Tortora A, Ianiro G, Ponziani F R, Annicchiarico B E, Gasbarrini A (2013). Gut microbiota and metabolic syndrome. Intern Emerg Med, 8(S1Suppl 1): 11–S15Google Scholar
  25. Dahiya D K, Renuka, Puniya M, Shandilya U K, Dhewa T, Kumar N, Kumar S, Puniya A K, Shukla P (2017). Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review. Front Microbiol, 8(April): Article-563, pp. 3–17Google Scholar
  26. Delaere F, Duchampt A, Mounien L, Seyer P, Duraffourd C, Zitoun C, Thorens B, Mithieux G (2013). The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol Metab, 2(1): 47–53Google Scholar
  27. Delzenne N M, Neyrinck A M, Bäckhed F, Cani P D (2011). Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol, 7(11): 639–646PubMedGoogle Scholar
  28. Devaraj S, Hemarajata P, Versalovic J (2013). The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem, 59(4): 617–628PubMedPubMedCentralGoogle Scholar
  29. Dominguez-Bello M G, Costello E K, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA, 107(26): 11971–11975PubMedGoogle Scholar
  30. Donnet-Hughes A, Perez P F, Doré J, Leclerc M, Levenez F, Benyacoub J, Serrant P, Segura-Roggero I, Schiffrin E J (2010). Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc Nutr Soc, 69(03):407–415PubMedGoogle Scholar
  31. Donohoe D R, Wali A, Brylawski B P, Bultman S J (2012). Microbial regulation of glucose metabolism and cell-cycle progression in mammalian colonocytes. PLoS One, 7(9): e46589PubMedPubMedCentralGoogle Scholar
  32. Elson C O, Cong Y (2012). Host-microbiota interactions in inflammatory bowel disease. Gut Microbes, 3(4): 332–344PubMedPubMedCentralGoogle Scholar
  33. Fessler M B, Rudel L L, Brown J M (2009). Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome. Curr Opin Lipidol, 20(5): 379–385PubMedPubMedCentralGoogle Scholar
  34. Fluitman K S, Clercq N C D, Keijser B J F, Visser M, Nieuwdorp M, IJzerman R G (2017). The intestinal microbiota, energy balance, and malnutrition: emphasis on the role of short-chain fatty acids. Expert Rev Endocrinol Metab, 12(3): 215–226Google Scholar
  35. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen H K, Arumugam M, Kristiansen K, Voigt A Y, Vestergaard H, Hercog R, Costea P I, Kultima J R, Li J, Jørgensen T, Levenez F, Dore J, MetaHIT consortium, Nielsen H B, Brunak S, Raes J, Hansen T, Wang J, Ehrlich S D, Bork P, Pedersen O, Almeida M, Antolin M, Artiguenave F, Batto JM, Bertalan M, Blottière H, Boruel N, Brechot C, Bruls T, Burgdorf K, Casellas F, Cultrone A, de Vos W M, Delorme C, Denariaz G, Derrien M, Dervyn R, Feng Q, Grarup N, Guarner F, Guedon E, Haimet F, Jamet A, Juncker A, Juste C, Kennedy S, Khaci G, Kleerebezem M, Knoll J, Layec S, Leclerc M, Leonard P, LePaslier D, M’Rini C, Maguin E, Manichanh C, Mende D, Mérieux A, Oozeer R, Parkhill J, Pelletier E, Pons N, Qin J, Rasmussen S, Renault P, Rescigno M, Sanchez N, Sicheritz-Ponten T, Tap J, Tims S, Torrejon A, Turner K, van de Guchte M, van Hylckama Vlieg JE, Vandemeulebrouck G, Varela E, Viega P, Weissenbach J, Winogradski Y, Yamada T, Zoetendal EG (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528(7581): 262–266PubMedPubMedCentralGoogle Scholar
  36. Frank D N, Amand A L St, Feldman R A, Boedeker E C, Harpaz N, Pace N R (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA, 104(34): 13780–13785PubMedGoogle Scholar
  37. Furet J P, Kong L C, Tap J, Poitou C, Basdevant A, Bouillot J L, Mariat D, Corthier G, Doré J, Henegar C, Rizkalla S, Clément K (2010). Differential adaptation of human gut microbiota to bariatric surgeryinduced weight loss: links with metabolic and low-grade inflammation markers. Diabetes, 59(12): 3049–3057PubMedPubMedCentralGoogle Scholar
  38. Gevers D, Knight R, Petrosino J F, Huang K, McGuire A L, Birren B W, Nelson K E, White O, Methé B A, Huttenhower C (2012). The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol, 10(8): e1001377PubMedPubMedCentralGoogle Scholar
  39. Hager C L, Ghannoum M A (2017). The mycobiome: Role in health and disease, and as a potential probiotic target in gastrointestinal disease. Dig Liver Dis, 49(11): 1171–1176PubMedGoogle Scholar
  40. Hansen R, Russell R K, Reiff C, Louis P, McIntosh F, Berry S H, Mukhopadhya I, Bisset W M, Barclay A R, Bishop J, Flynn D M, McGrogan P, Loganathan S, Mahdi G, Flint H J, El-Omar E M, Hold G L (2012). Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn’s but not in ulcerative colitis. Am J Gastroenterol, 107(12): 1913–1922PubMedGoogle Scholar
  41. Hartstra A V, Bouter K E, Bäckhed F, Nieuwdorp M (2015). Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care, 38(1): 159–165PubMedGoogle Scholar
  42. Heisel T, Montassier E, Johnson A, Al-Ghalith G, Lin Y W, Wei L N, Knights D, Gale C A (2017). High-fat diet changes fungal microbiomes and interkingdom relationships in the murine gut. MSphere, 2(5): e00351–17PubMedPubMedCentralGoogle Scholar
  43. Hinzey E M, R D, L DN (2016). Firmicutes and Bacteroidetes. Nutrition 411, 8–11. Retrieved from:https://doi.org/www.nutrition411.com/articles/firmicutes-and-bacteroidetes Google Scholar
  44. Ho P, Ross D A (2017). More Than a Gut Feeling: The Implications of the Gut Microbiota in Psychiatry. Biol Psychiatry, 81(5): e35–e37PubMedPubMedCentralGoogle Scholar
  45. Holleran G, Lopetuso L R, Ianiro G, Pecere S, Pizzoferrato M, Petito V, Graziani C, McNamara D, Gasbarrini A, Scaldaferri F (2017). Gut microbiota and inflammatory bowel disease: so far so gut! Minerva Gastroenterol Dietol, 63(4): 373–384PubMedGoogle Scholar
  46. Human Microbiome Project Consortium, Huttenhower C, Gevers D, Knight R, Abubucker S, Badger J H, Chinwalla A T, Creasy H H, Earl A M, FitzGerald M G, Fulton R S, Giglio M G, Hallsworth-Pepin K, Lobos E A, Madupu R, Magrini V, Martin J C, Mitreva M, Muzny D M, Sodergren E J, Versalovic J, Wollam A M, Worley K C, Wortman J R, Young S K, Zeng Q, Aagaard K M, Abolude O O, Allen-Vercoe E, Alm E J, Alvarado L, Andersen G L, Anderson S, Appelbaum E, Arachchi H M, Armitage G, Arze C A, Ayvaz T, Baker C C, Begg L, Belachew T, Bhonagiri V, Bihan M, Blaser M J, Bloom T, Bonazzi V, Paul Brooks J, Buck G A, Buhay C J, Busam D A, Campbell J L, Canon S R, Cantarel B L, Chain P S G, Chen I M A, Chen L, Chhibba S, Chu K, Ciulla D M, Clemente J C, Clifton S W, Conlan S, Crabtree J, Cutting M A, Davidovics N J, Davis C C, DeSantis T Z, Deal C, Delehaunty K D, Dewhirst F E, Deych E, Ding Y, Dooling D J, Dugan S P, Michael Dunne W, Scott Durkin A, Edgar R C, Erlich R L, Farmer C N, Farrell R M, Faust K, Feldgarden M, Felix V M, Fisher S, Fodor A A, Forney L J, Foster L, Di Francesco V, Friedman J, Friedrich D C, Fronick C C, Fulton L L, Gao H, Garcia N, Giannoukos G, Giblin C, Giovanni M Y, Goldberg J M, Goll J, Gonzalez A, Griggs A, Gujja S, Kinder Haake S, Haas B J, Hamilton H A, Harris E L, Hepburn T A, Herter B, Hoffmann D E, Holder M E, Howarth C, Huang K H, Huse S M, Izard J, Jansson J K, Jiang H, Jordan C, Joshi V, Katancik J A, Keitel W A, Kelley S T, Kells C, King N B, Knights D, Kong H H, Koren O, Koren S, Kota K C, Kovar C L, Kyrpides N C, La Rosa P S, Lee S L, Lemon K P, Lennon N, Lewis C M, Lewis L, Ley R E, Li K, Liolios K, Liu B, Liu Y, Lo C C, Lozupone C A, Dwayne Lunsford R, Madden T, Mahurkar A A, Mannon P J, Mardis E R, Markowitz V M, Mavromatis K, McCorrison J M, McDonald D, McEwen J, McGuire A L, McInnes P, Mehta T, Mihindukulasuriya K A, Miller J R, Minx P J, Newsham I, Nusbaum C, O’Laughlin M, Orvis J, Pagani I, Palaniappan K, Patel S M, Pearson M, Peterson J, Podar M, Pohl C, Pollard K S, Pop M, Priest M E, Proctor L M, Qin X, Raes J, Ravel J, Reid J G, Rho M, Rhodes R, Riehle K P, Rivera M C, Rodriguez-Mueller B, Rogers Y H, Ross M C, Russ C, Sanka R K, Sankar P, Fah Sathirapongsasuti J, Schloss J A, Schloss P D, Schmidt T M, Scholz M, Schriml L, Schubert A M, Segata N, Segre J A, Shannon W D, Sharp R R, Sharpton T J, Shenoy N, Sheth N U, Simone G A, Singh I, Smillie C S, Sobel J D, Sommer D D, Spicer P, Sutton G G, Sykes S M, Tabbaa D G, Thiagarajan M, Tomlinson C M, Torralba M, Treangen T J, Truty R M, Vishnivetskaya T A, Walker J, Wang L, Wang Z, Ward D V, Warren W, Watson M A, Wellington C, Wetterstrand K A, White J R, Wilczek-Boney K, Wu Y Q, Wylie K M, Wylie T, Yandava C, Ye L, Ye Y, Yooseph S, Youmans B P, Zhang L, Zhou Y, Zhu Y, Zoloth L, Zucker J D, Birren B W, Gibbs R A, Highlander S K, Methé B A, Nelson K E, Petrosino J F, Weinstock G M, Wilson R K, White O, and the (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402): 207–214Google Scholar
  47. Hur K Y, Lee M S (2015). Gut Microbiota and Metabolic Disorders. Diabetes Metab J, 39(3): 198–203PubMedPubMedCentralGoogle Scholar
  48. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, Fukase K, Inamura S, Kusumoto S, Hashimoto M, Foster S J, Moran A P, Fernandez-Luna J L, Nuñez G (2003). Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem, 278(8): 5509–5512PubMedGoogle Scholar
  49. Jakobsson H E, Abrahamsson T R, Jenmalm M C, Harris K, Quince C, Jernberg C, Björkstén B, Engstrand L, Andersson A F (2014). Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut, 63(4): 559–566PubMedGoogle Scholar
  50. Jovel J, Patterson J, Wang W, Hotte N, O’Keefe S, Mitchel T, Perry T, Kao D, Mason AL, Madsen KL, Wong GK (2016). Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics. Front Microbiol, 7:459, 1–17Google Scholar
  51. Karlsson F H, Tremaroli V, Nookaew I, Bergström G, Behre C J, Fagerberg B, Nielsen J, Bäckhed F (2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 498(7452): 99–103PubMedGoogle Scholar
  52. Khor B, Gardet A, Xavier R J (2011). Genetics and pathogenesis of inflammatory bowel disease. Nature, 474(7351): 307–317PubMedPubMedCentralGoogle Scholar
  53. Khoruts A, Dicksved J, Jansson J K, Sadowsky M J (2010). Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol, 44(5): 354–360PubMedGoogle Scholar
  54. Koenig J E, Spor A, Scalfone N, Fricker A D, Stombaugh J, Knight R, Angenent L T, Ley R E (2011). Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA, 108(Suppl 1): 4578–4585PubMedGoogle Scholar
  55. Komaroff A L (2017). The microbiome and risk for obesity and diabetes. JAMA, 317(4): 355–356PubMedGoogle Scholar
  56. Kumar R, Yi N, Zhi D, Eipers P, Goldsmith K T, Dixon P, Crossman D K, Crowley M R, Lefkowitz E J, Rodriguez J M, Morrow C D (2017). Identification of donor microbe species that colonize and persist long term in the recipient after fecal transplant for recurrentClostridium difficile. NPJ Biofilms Microbiomes, 3(1): 12PubMedPubMedCentralGoogle Scholar
  57. Larsson E, Tremaroli V, Lee YS, Koren O, Nookaew I, Fricker A, Nielsen J, Ley RE, Bäckhed F (2012). Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut, 61(8):1124–31PubMedGoogle Scholar
  58. Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M (2010). Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS ONE 5:e9085PubMedPubMedCentralGoogle Scholar
  59. Le Barz M, Anhê F F, Varin T V, Desjardins Y, Levy E, Roy D, Urdaci M C, Marette A (2015). Probiotics as Complementary Treatment for Metabolic Disorders. Diabetes Metab J, 39(4): 291–303PubMedPubMedCentralGoogle Scholar
  60. Lederberg J, McCray A T (2001). ‘Ome Sweet’ Omics- A Genealogical Treasury of Words Genealogical Treasury of Words. Scientist, 15(7): 8. Available at:{rs https://lhncbc.nlm.nih.gov/publication/lhncbc-2001-047 URL}Google Scholar
  61. Leeuwenhoek A Van (1683). An abstract of a Letter from Antonie van Leeuwenhoek, Sep. 12, 1683. About Animals in the scrurf of the Teeth. Philosophical Transactions of the Royal Society of London, 14: 568–574.Google Scholar
  62. Lepage P, Häsler R, Spehlmann M E, Rehman A, Zvirbliene A, Begun A, Ott S, Kupcinskas L, Doré J, Raedler A, Schreiber S (2011). Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology, 141(1): 227–236PubMedGoogle Scholar
  63. Ley R E, Bäckhed F, Turnbaugh P, Lozupone C A, Knight R D, Gordon J I (2005). Obesity alters gut microbial ecology. Proc Natl Acad Sci USA, 102(31): 11070–11075PubMedGoogle Scholar
  64. Ley R E, Turnbaugh P J, Klein S, Gordon J I (2006). Microbial ecology: human gut microbes associated with obesity. Nature, 444(7122): 1022–1023PubMedGoogle Scholar
  65. Li X, Qin L (2005). Metagenomics-based drug discovery and marine microbial diversity. Trends Biotechnol, 23(11):539–43PubMedGoogle Scholar
  66. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, Van Immerseel F, Verbeke K, Ferrante M, Verhaegen J, Rutgeerts P, Vermeire S (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 63(8): 1275–1283PubMedGoogle Scholar
  67. Marchesi J R (2010). Prokaryotic and eukaryotic diversity of the human gut. Adv Appl Microbiol, 72, 43–62PubMedGoogle Scholar
  68. Matsuoka K, Kanai T (2015). The gut microbiota and inflammatory bowel disease. Semin Immunopathol, 37(1): 47–55PubMedGoogle Scholar
  69. McIlroy J, Ianiro G, Mukhopadhya I, Hansen R, Hold G L (2018). Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management. Aliment Pharmacol Ther, 47(1): 26–42PubMedGoogle Scholar
  70. Methé B A, Nelson K E, Pop M, Creasy H H, Giglio M G, Huttenhower C, Gevers D, Petrosino J F, Abubucker S, Badger J H, Chinwalla A T, Earl A M, FitzGerald M G, Fulton R S, Hallsworth-Pepin K, Lobos E A, Madupu R, Magrini V, Martin J C, Mitreva M, Muzny D M, Sodergren E J, Versalovic J, Wollam A M, Worley K C, Wortman J R, Young S K, Zeng Q, Aagaard K M, Abolude O O, Allen-Vercoe E, Alm E J, Alvarado L, Andersen G L, Anderson S, Appelbaum E, Arachchi H M, Armitage G, Arze C A, Ayvaz T, Baker C C, Begg L, Belachew T, Bhonagiri V, Bihan M, Blaser M J, Bloom T, Bonazzi V R, Brooks P, Buck G A, Buhay C J, Busam D A, Campbell J L, Canon S R, Cantarel B L, Chain P S, Chen I M, Chen L, Chhibba S, Chu K, Ciulla D M, Clemente J C, Clifton S W, Conlan S, Crabtree J, Cutting M A, Davidovics N J, Davis C C, DeSantis T Z, Deal C, Delehaunty K D, Dewhirst F E, Deych E, Ding Y, Dooling D J, Dugan S P, Dunne W Jr, Durkin A, Edgar R C, Erlich R L, Farmer C N, Farrell R M, Faust K, Feldgarden M, Felix V M, Fisher S, Fodor A A, Forney L, Foster L, Di Francesco V, Friedman J, Friedrich D C, Fronick C C, Fulton L L, Gao H, Garcia N, Giannoukos G, Giblin C, Giovanni M Y, Goldberg J M, Goll J, Gonzalez A, Griggs A, Gujja S, Haas B J, Hamilton H A, Harris E L, Hepburn T A, Herter B, Hoffmann D E, Holder M E, Howarth C, Huang K H, Huse S M, Izard J, Jansson J K, Jiang H, Jordan C, Joshi V, Katancik J A, Keitel W A, Kelley S T, Kells C, Kinder-Haake S, King N B, Knight R, Knights D, Kong H H, Koren O, Koren S, Kota K C, Kovar C L, Kyrpides N C, La Rosa P S, Lee S L, Lemon K P, Lennon N, Lewis C M, Lewis L, Ley R E, Li K, Liolios K, Liu B, Liu Y, Lo C C, Lozupone C A, Lunsford R, Madden T, Mahurkar A A, Mannon P J, Mardis E R, Markowitz V M, Mavrommatis K, McCorrison J M, McDonald D, McEwen J, McGuire A L, McInnes P, Mehta T, Mihindukulasuriya K A, Miller J R, Minx P J, Newsham I, Nusbaum C, O’Laughlin M, Orvis J, Pagani I, Palaniappan K, Patel S M, Pearson M, Peterson J, Podar M, Pohl C, Pollard K S, Priest M E, Proctor L M, Qin X, Raes J, Ravel J, Reid J G, Rho M, Rhodes R, Riehle K P, Rivera M C, Rodriguez-Mueller B, Rogers Y H, Ross M C, Russ C, Sanka R K, Sankar P, Sathirapongsasuti J, Schloss J A, Schloss P D, Schmidt T M, Scholz M, Schriml L, Schubert A M, Segata N, Segre J A, Shannon W D, Sharp R R, Sharpton T J, Shenoy N, Sheth N U, Simone G A, Singh I, Smillie C S, Sobel J D, Sommer D D, Sommer P, Sutton G G, Sykes S M, Tabbaa D G, Thiagarajan M, Tomlinson C M, Torralba M, Treangen T J, Truty R M, Vishnivetskaya T A, Walker J, Wang L, Wang Z, Ward D V, Warren W, Watson M A, Wellington C, Wetterstrand K A, White J R, Wilczek-Boney K, Wu Y Q, Wylie K M, Wylie T, Yandava C, Ye L, Ye Y, Yooseph S, Youmans B P, Zhang L, Zhou Y, Zhu Y, Zoloth L, Zucker J D, Birren B W, Gibbs R A, Highlander S K, Weinstock G M, Wilson R K, White O (2012). A framework for human microbiome. Nature, 486(7402): 215–SPubMedCentralGoogle Scholar
  71. Morgan X C, Tickle T L, Sokol H, Gevers D, Devaney K L, Ward D V, Reyes J A, Shah S A, LeLeiko N, Snapper S B, Bousvaros A, Korzenik J, Sands B E, Xavier R J, Huttenhower C (2012). Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol, 13(9): R79PubMedPubMedCentralGoogle Scholar
  72. O’Hara A M, Shanahan F (2006). The gut flora as a forgotten organ. EMBO Rep, 7(7): 688–693PubMedPubMedCentralGoogle Scholar
  73. Ogura Y, Bonen D K, Inohara N, Nicolae D L, Chen F F, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr R H, Achkar J P, Brant S R, Bayless T M, Kirschner B S, Hanauer S B, Nuñez G, Cho J H (2001). A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature, 411(6837): 603–606PubMedGoogle Scholar
  74. Pace N R, Stahl D A, Lane D J, Olsen G J (1986). The Analysis of Natural Microbial Populations by Ribosomal RNA Sequences. Adv Microb Ecol, 9: 1–55Google Scholar
  75. Palmer C, Bik E M, DiGiulio D B, Relman D A, Brown P O (2007). Development of the human infant intestinal microbiota. PLoS Biol, 5(7): e177PubMedPubMedCentralGoogle Scholar
  76. Park D Y, Ahn Y T, Park S H, Huh C S, Yoo S R, Yu R, Sung M K, McGregor R A, Choi M S (2013). Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in dietinduced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One, 8(3): e59470PubMedPubMedCentralGoogle Scholar
  77. Björkstén A E, Gosalbes M J, Friedrichs A, Knecht H, Artacho A, Eismann K, Otto W, Rojo D, Bargiela R, von Bergen M, Neulinger S C, Däumer C, Heinsen F A, Latorre A, Barbas C, Seifert J, dos Santos V M, Ott S J, Ferrer M, Moya A (2013). Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut, 62(11): 1591–1601Google Scholar
  78. Perry R J, Peng L, Barry N A, Cline G W, Zhang D, Cardone R L, Petersen K F, Kibbey R G, Goodman A L, Shulman G I (2016). Acetate mediates a microbiome-brain—cell axis to promote metabolic syndrome. Nature, 534(7606): 213–217PubMedPubMedCentralGoogle Scholar
  79. The NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW, Lunsford RD, Wellington CR, Belachew T, Wright M, Giblin C, David H, Mills M, Salomon R, Mullins C, Akolkar B, Begg L, Davis C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H, Pontzer C, Portnoy M, Sayre MH, Starke-Reed P, Zakhari S, Read J, Watson B, Guyer M (2009). The NIH Human Microbiome Project. Genome Res, 19(12): 2317–2323PubMedCentralGoogle Scholar
  80. Petnicki-Ocwieja T, Hrncir T, Liu Y J, Biswas A, Hudcovic T, Tlaskalova-Hogenova H, Kobayashi K S (2009). Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci USA, 106(37): 15813–15818PubMedGoogle Scholar
  81. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J(2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418): 55–60PubMedGoogle Scholar
  82. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende D R, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J M, Hansen T, Le Paslier D, Linneberg A, Nielsen H B, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J; MetaHIT Consortium, Bork P, Ehrlich SD, Wang J, Antolin M, Artiguenave F, Blottiere H, Borruel N, Bruls T, Casellas F, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Forte M, Friss C, van de Guchte M, Guedon E, Haimet F, Jamet A, Juste C, Kaci G, Kleerebezem M, Knol J, Kristensen M, Layec S, Le Roux K, Leclerc M, Maguin E, Minardi RM, Oozeer R, Rescigno M, Sanchez N, Tims S, Torrejon T, Varela E, de Vos W, Winogradsky Y, Zoetendal E(2010).A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285): 59–65PubMedPubMedCentralGoogle Scholar
  83. Ridaura V K, Faith J J, Rey F E, Cheng J, Duncan A E, Kau A L, Ggriffin N W, Lombard V, Henrissat B, Bain JR, Muehlbauer M J, Ilkaveya O, Semenkovich C F, Funai K, Hayashi D K, Lyle B J, Martini M C, Ursell L K, Clemente J C, Treuren W V, Walters W A, Knight R, Newgard C B, Heath AC & Gordon JI (2013). Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice. Science, 341(6150): 1–22Google Scholar
  84. Roberfroid M, Gibson G R, Hoyles L, McCartney A L, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco M J, Léotoing L, Wittrant Y, Delzenne N M, Cani P D, Neyrinck A M, Meheust A (2010). Prebiotic effects: metabolic and health benefits. Br J Nutr, 104(S2Suppl 2): S1–S63PubMedGoogle Scholar
  85. Sartor R B (2008). Microbial influences in inflammatory bowel diseases. Gastroenterology, 134(2): 577–594PubMedGoogle Scholar
  86. Savage D C (1977). Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol, 31(1): 107–133PubMedGoogle Scholar
  87. Scanlan P D, Shanahan F, O’Mahony C, Marchesi J R (2006). Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease. J Clin Microbiol, 44(11): 3980–3988PubMedPubMedCentralGoogle Scholar
  88. Scott L J, Mohlke K L, Bonnycastle L L, Willer C J, Li Y, Duren W L, Erdos M R, Stringham H M, Chines P S, Jackson A U, Prokunina-Olsson L, Ding C J, Swift A J, Narisu N, Hu T, Pruim R, Xiao R, Li X Y, Conneely K N, Riebow N L, Sprau A G, Tong M, White P P, Hetrick K N, Barnhart M W, Bark C W, Goldstein J L, Watkins L, Xiang F, Saramies J, Buchanan T A, Watanabe R M, Valle T T, Kinnunen L, Abecasis G R, Pugh E W, Doheny K F, Bergman R N, Tuomilehto J, Collins F S, Boehnke M (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science, 316(5829): 1341–1345PubMedPubMedCentralGoogle Scholar
  89. Sharon I, Morowitz M J, Thomas B C, Costello E K, Relman D A, Banfield J F (2013). Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res, 23(1): 111–120PubMedPubMedCentralGoogle Scholar
  90. Sheehan D, Shanahan F (2017). The Gut Microbiota in Inflammatory Bowel Disease. Gastroenterol Clin North Am, 46(1): 143–154PubMedGoogle Scholar
  91. Slattery J, MacFabe D F, Frye R E (2016). The significance of the enteric microbiome on the development of childhood disease: A review of prebiotic and probiotic therapies in disorders of childhood. Clin Med Insights Pediatr, 10: CMPed.S38338-107Google Scholar
  92. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán L G, Gratadoux J J, Blugeon S, Bridonneau C, Furet J P, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière H M, Doré J, Marteau P, Seksik P, Langella P (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA, 105(43): 16731–16736PubMedGoogle Scholar
  93. Sokol H, Seksik P (2010). The intestinal microbiota in inflammatory bowel diseases: time to connect with the host. Curr Opin Gastroenterol, 26(4): 327–331PubMedGoogle Scholar
  94. Tang W H W, Kitai T, Hazen S L (2017). Gut Microbiota in Cardiovascular Health and Disease. Circ Res, 120(7): 1183–1196PubMedPubMedCentralGoogle Scholar
  95. Tong M, Li X, Wegener Parfrey L, Roth B, Ippoliti A, Wei B, Borneman J, McGovern D P, Frank D N, Li E, Horvath S, Knight R, Braun J (2013). A modular organization of the human intestinal mucosal microbiota and its association with inflammatory bowel disease. PLoS One, 8(11): e80702PubMedPubMedCentralGoogle Scholar
  96. Turnbaugh P J, Bäckhed F, Fulton L, Gordon J I (2008). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe, 3(4): 213–223PubMedPubMedCentralGoogle Scholar
  97. Turnbaugh P J, Ley R E, Mahowald M A, Magrini V, Mardis E R, Gordon J I (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122): 1027–1131PubMedGoogle Scholar
  98. Tvede M, Rask-Madsen J (1989). Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet, 333(8648): 1156–1160Google Scholar
  99. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte R S, Bartelsman J F, Dallinga-Thie G M, Ackermans M T, Serlie M J, Oozeer R, Derrien M, Druesne A, Van Hylckama Vlieg J E, Bloks V W, Groen A K, Heilig H G, Zoetendal E G, Stroes E S, de Vos WM, Hoekstra J B, Nieuwdorp M (2012). Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 143(4): 913–6.PubMedGoogle Scholar
  100. Walsh C J, Guinane C M, O’Toole P W, Cotter P D (2014). Beneficial modulation of the gut microbiota. FEBS Lett, 588(22): 4120–4130PubMedGoogle Scholar
  101. Wolf K J, Lorenz R G (2012). Gut Microbiota and Obesity. Curr Obes Rep, 1(1): 1–8PubMedPubMedCentralGoogle Scholar
  102. Woodworth M H, Carpentieri C, Sitchenko K L, Kraft C S (2017). Challenges in fecal donor selection and screening for fecal microbiota transplantation: A review. Gut Microbes, 8(3): 225–237PubMedPubMedCentralGoogle Scholar
  103. Yadav H, Lee J H, Lloyd J, Walter P, Rane S G (2013). Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem, 288(35): 25088–97PubMedPubMedCentralGoogle Scholar
  104. Zhu W, Winter M G, Byndloss M X, Spiga L, Duerkop B A, Hughes E R, Büttner L, de Lima Romão E, Behrendt C L, Lopez C A, Sifuentes-Dominguez L, Huff-Hardy K, Wilson R P, Gillis C C, Tükel Ç, Koh A Y, Burstein E, Hooper L V, Bäumler A J, Winter S E (2018). Precision editing of the gut microbiota ameliorates colitis. Nature, 553(7687): 208–211PubMedPubMedCentralGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Bio Sciences and TechnologyVIT UniversityVelloreIndia

Personalised recommendations