Abstract
Background
Metabolic disorders such as Obesity, Diabetes Type 2 (T2DM) and Inflammatory Bowel Diseases (IBD) are the most prevalent globally. Recently, there has been a surge in the evidence indicating the correlation between the intestinal microbiota and development of these metabolic conditions apart from predisposing genetic and epigenetic factors. Gut microbiome is pivotal in controlling the host metabolism and physiology. But imbalances in the microbiota patterns lead to these disorders via several pathways. Animal and human studies so far have concentrated mostly on metagenomics for the whole microbiome characterization to understand how microbiome supports health in general. However, the accurate mechanisms connecting the metabolic disorders and alterations in gut microbial composition in host and the metabolites employed by the microorganisms in regulating the metabolic disorders is still vague.
Objective
The review delineates the latest findings about the role of gut microbiome to the pathophysiology of Obesity, IBD and Diabetes Mellitus. Here, we provide a brief introduction to the gut microbiome followed by the current therapeutic interventions in restoration of the disrupted intestinal microbiota.
Methods
A methodical PubMed search was performed using keywords like “gut microbiome,” “obesity,” “diabetes,” “IBD,” and “metabolic syndromes.” All significant and latest publications up to January 2018 were accounted for the review.
Results
Out of the 93 articles cited, 63 articles focused on the gut microbiota association to these disorders. The rest 18 literature outlines the therapeutic approaches in maintaining the gut homeostasis using probiotics, prebiotics and faecal microbial transplant (FMT).
Conclusion
Metabolic disorders have intricate etiology and thus a lucid understanding of the complex host-microbiome inter-relationships will open avenues to novel therapeutics for the diagnosis, prevention and treatment of the metabolic diseases.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Aas J, Gessert C E, Bakken J S (2003). Recurrent Clostridium difficile colitis: case series involving 18 patients treated with donor stool administered via a nasogastric tube. Clin Infect Dis, 36(5): 580–585
Adlerberth I, Wold A E (2009). Establishment of the gut microbiota in Western infants. Acta Paediatr, 98(2): 229–238
Allen J M, Mailing L J, Niemiro G M, Moore R, Cook M D, White B A, Holscher H D, Woods J A(2018). Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Med Sci Sports Exerc, 50(4): 747–757.doi:https://doi.org/10.1249/MSS.0000000000001495
Aw W, Fukuda S (2018). Understanding the role of the gut ecosystem in diabetes mellitus. J Diabetes Investig, 9(1): 5–12
Bäckhed F, Ding H, Wang T, Hooper L V, Koh G Y, Nagy A, Semenkovich C F, Gordon J I (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA, 101(44): 15718–15723
Bäckhed F, Ley R E, Sonnenburg J L, Peterson D A, Gordon J I (2005). Host-bacterial mutualism in the human intestine. Science, 307(5717): 1915–1920
Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, Khan M T, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D, Lee Y S, Kotowska D, Colding C, Tremaroli V, Yin Y, Bergman S, Xu X, Madsen L, Kristiansen K, Dahlgren J, Wang J (2015). Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe, 17(5):690–703doi:https://doi.org/10.1016/j.chom.2015.05.012
Barlow G M, Yu A, Mathur R (2015). Role of the Gut Microbiome in Obesity and Diabetes Mellitus. Nutr Clin Pract, 30(6): 787–797
Bevins C L, Salzman N H (2011). Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol, 9(5): 356–368
Boulangé C L, Neves A L, Chilloux J, Nicholson J K, Dumas M E (2016). Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med, 8(1): 1–12
Brunkwall L, Orho-Melander M (2017). The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia, 60(6): 943–951
Calças N, Mendonça L, Perez L, Ferreira R, Elisei C, Castro A (2017). Diet as a Therapy for Gut Dysbacteriosis. JSM Biochem Mol Biol, 4(1): 102, pp. 1–6.
Cani P D (2013). Gut microbiota and obesity: lessons from the microbiome. Brief Funct Genomics, 12(4): 381–387
Cani P D, Delzenne NM (2009). The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des, 15(13): 1546–1558
Cani P D, Knauf C, Iglesias M A, Drucker D J, Delzenne N M, Burcelin R (2006). Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes, 55(5): 1484–1490
Cani P D, Lecourt E, Dewulf E M, Sohet F M, Pachikian B D, Naslain D, De Backer F, Neyrinck A M, Delzenne N M (2009). Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr, 90(5): 1236–1243
Cani P D, Neyrinck A M, Fava F, Knauf C, Burcelin R G, Tuohy K M, Gibson G R, Delzenne N M (2007). Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 50(11): 2374–2383
Catalán V, Gómez-Ambrosi J, Ramirez B, Rotellar F, Pastor C, Silva C, Rodríguez A, Gil M J, Cienfuegos J A, Frühbeck G (2007). Proinflammatory cytokines in obesity: impact of type 2 diabetes mellitus and gastric bypass. Obes Surg, 17(11): 1464–1474
Cénit M C, Matzaraki V, Tigchelaar E F, Zhernakova A (2014). Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochim Biophys Acta, 1842(10): 1981–1992
Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O’Connor M, Harnedy N, O’Connor K, Henry C, O’Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O’Toole PW(2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA, 108(Suppl 1): 4586–4591
Clarke S F, Murphy E F, Nilaweera K, Ross P R, Shanahan F, O’Toole P W, Cotter P D (2012). The gut microbiota and its relationship to diet and obesity. Gut Microbes, 3(3): 186–202
Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A, Haesler R, Huot L, Grandjean T, Bressenot A, Delanoye-Crespin A, Gaillot O, Schreiber S, Lemoine Y, Ryffel B, Hot D, Nùñez G, Chen G, Rosenstiel P, Chamaillard M (2013). NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest, 123(2): 700–711
D’Argenio V, Salvatore F (2015). The role of the gut microbiome in the healthy adult status. Clin Chim Acta, 451(Pt A): 97–102
D’Aversa F, Tortora A, Ianiro G, Ponziani F R, Annicchiarico B E, Gasbarrini A (2013). Gut microbiota and metabolic syndrome. Intern Emerg Med, 8(S1Suppl 1): 11–S15
Dahiya D K, Renuka, Puniya M, Shandilya U K, Dhewa T, Kumar N, Kumar S, Puniya A K, Shukla P (2017). Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review. Front Microbiol, 8(April): Article-563, pp. 3–17
Delaere F, Duchampt A, Mounien L, Seyer P, Duraffourd C, Zitoun C, Thorens B, Mithieux G (2013). The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol Metab, 2(1): 47–53
Delzenne N M, Neyrinck A M, Bäckhed F, Cani P D (2011). Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol, 7(11): 639–646
Devaraj S, Hemarajata P, Versalovic J (2013). The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem, 59(4): 617–628
Dominguez-Bello M G, Costello E K, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA, 107(26): 11971–11975
Donnet-Hughes A, Perez P F, Doré J, Leclerc M, Levenez F, Benyacoub J, Serrant P, Segura-Roggero I, Schiffrin E J (2010). Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc Nutr Soc, 69(03):407–415
Donohoe D R, Wali A, Brylawski B P, Bultman S J (2012). Microbial regulation of glucose metabolism and cell-cycle progression in mammalian colonocytes. PLoS One, 7(9): e46589
Elson C O, Cong Y (2012). Host-microbiota interactions in inflammatory bowel disease. Gut Microbes, 3(4): 332–344
Fessler M B, Rudel L L, Brown J M (2009). Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome. Curr Opin Lipidol, 20(5): 379–385
Fluitman K S, Clercq N C D, Keijser B J F, Visser M, Nieuwdorp M, IJzerman R G (2017). The intestinal microbiota, energy balance, and malnutrition: emphasis on the role of short-chain fatty acids. Expert Rev Endocrinol Metab, 12(3): 215–226
Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen H K, Arumugam M, Kristiansen K, Voigt A Y, Vestergaard H, Hercog R, Costea P I, Kultima J R, Li J, Jørgensen T, Levenez F, Dore J, MetaHIT consortium, Nielsen H B, Brunak S, Raes J, Hansen T, Wang J, Ehrlich S D, Bork P, Pedersen O, Almeida M, Antolin M, Artiguenave F, Batto JM, Bertalan M, Blottière H, Boruel N, Brechot C, Bruls T, Burgdorf K, Casellas F, Cultrone A, de Vos W M, Delorme C, Denariaz G, Derrien M, Dervyn R, Feng Q, Grarup N, Guarner F, Guedon E, Haimet F, Jamet A, Juncker A, Juste C, Kennedy S, Khaci G, Kleerebezem M, Knoll J, Layec S, Leclerc M, Leonard P, LePaslier D, M’Rini C, Maguin E, Manichanh C, Mende D, Mérieux A, Oozeer R, Parkhill J, Pelletier E, Pons N, Qin J, Rasmussen S, Renault P, Rescigno M, Sanchez N, Sicheritz-Ponten T, Tap J, Tims S, Torrejon A, Turner K, van de Guchte M, van Hylckama Vlieg JE, Vandemeulebrouck G, Varela E, Viega P, Weissenbach J, Winogradski Y, Yamada T, Zoetendal EG (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528(7581): 262–266
Frank D N, Amand A L St, Feldman R A, Boedeker E C, Harpaz N, Pace N R (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA, 104(34): 13780–13785
Furet J P, Kong L C, Tap J, Poitou C, Basdevant A, Bouillot J L, Mariat D, Corthier G, Doré J, Henegar C, Rizkalla S, Clément K (2010). Differential adaptation of human gut microbiota to bariatric surgeryinduced weight loss: links with metabolic and low-grade inflammation markers. Diabetes, 59(12): 3049–3057
Gevers D, Knight R, Petrosino J F, Huang K, McGuire A L, Birren B W, Nelson K E, White O, Methé B A, Huttenhower C (2012). The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol, 10(8): e1001377
Hager C L, Ghannoum M A (2017). The mycobiome: Role in health and disease, and as a potential probiotic target in gastrointestinal disease. Dig Liver Dis, 49(11): 1171–1176
Hansen R, Russell R K, Reiff C, Louis P, McIntosh F, Berry S H, Mukhopadhya I, Bisset W M, Barclay A R, Bishop J, Flynn D M, McGrogan P, Loganathan S, Mahdi G, Flint H J, El-Omar E M, Hold G L (2012). Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn’s but not in ulcerative colitis. Am J Gastroenterol, 107(12): 1913–1922
Hartstra A V, Bouter K E, Bäckhed F, Nieuwdorp M (2015). Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care, 38(1): 159–165
Heisel T, Montassier E, Johnson A, Al-Ghalith G, Lin Y W, Wei L N, Knights D, Gale C A (2017). High-fat diet changes fungal microbiomes and interkingdom relationships in the murine gut. MSphere, 2(5): e00351–17
Hinzey E M, R D, L DN (2016). Firmicutes and Bacteroidetes. Nutrition 411, 8–11. Retrieved from:https://doi.org/www.nutrition411.com/articles/firmicutes-and-bacteroidetes
Ho P, Ross D A (2017). More Than a Gut Feeling: The Implications of the Gut Microbiota in Psychiatry. Biol Psychiatry, 81(5): e35–e37
Holleran G, Lopetuso L R, Ianiro G, Pecere S, Pizzoferrato M, Petito V, Graziani C, McNamara D, Gasbarrini A, Scaldaferri F (2017). Gut microbiota and inflammatory bowel disease: so far so gut! Minerva Gastroenterol Dietol, 63(4): 373–384
Human Microbiome Project Consortium, Huttenhower C, Gevers D, Knight R, Abubucker S, Badger J H, Chinwalla A T, Creasy H H, Earl A M, FitzGerald M G, Fulton R S, Giglio M G, Hallsworth-Pepin K, Lobos E A, Madupu R, Magrini V, Martin J C, Mitreva M, Muzny D M, Sodergren E J, Versalovic J, Wollam A M, Worley K C, Wortman J R, Young S K, Zeng Q, Aagaard K M, Abolude O O, Allen-Vercoe E, Alm E J, Alvarado L, Andersen G L, Anderson S, Appelbaum E, Arachchi H M, Armitage G, Arze C A, Ayvaz T, Baker C C, Begg L, Belachew T, Bhonagiri V, Bihan M, Blaser M J, Bloom T, Bonazzi V, Paul Brooks J, Buck G A, Buhay C J, Busam D A, Campbell J L, Canon S R, Cantarel B L, Chain P S G, Chen I M A, Chen L, Chhibba S, Chu K, Ciulla D M, Clemente J C, Clifton S W, Conlan S, Crabtree J, Cutting M A, Davidovics N J, Davis C C, DeSantis T Z, Deal C, Delehaunty K D, Dewhirst F E, Deych E, Ding Y, Dooling D J, Dugan S P, Michael Dunne W, Scott Durkin A, Edgar R C, Erlich R L, Farmer C N, Farrell R M, Faust K, Feldgarden M, Felix V M, Fisher S, Fodor A A, Forney L J, Foster L, Di Francesco V, Friedman J, Friedrich D C, Fronick C C, Fulton L L, Gao H, Garcia N, Giannoukos G, Giblin C, Giovanni M Y, Goldberg J M, Goll J, Gonzalez A, Griggs A, Gujja S, Kinder Haake S, Haas B J, Hamilton H A, Harris E L, Hepburn T A, Herter B, Hoffmann D E, Holder M E, Howarth C, Huang K H, Huse S M, Izard J, Jansson J K, Jiang H, Jordan C, Joshi V, Katancik J A, Keitel W A, Kelley S T, Kells C, King N B, Knights D, Kong H H, Koren O, Koren S, Kota K C, Kovar C L, Kyrpides N C, La Rosa P S, Lee S L, Lemon K P, Lennon N, Lewis C M, Lewis L, Ley R E, Li K, Liolios K, Liu B, Liu Y, Lo C C, Lozupone C A, Dwayne Lunsford R, Madden T, Mahurkar A A, Mannon P J, Mardis E R, Markowitz V M, Mavromatis K, McCorrison J M, McDonald D, McEwen J, McGuire A L, McInnes P, Mehta T, Mihindukulasuriya K A, Miller J R, Minx P J, Newsham I, Nusbaum C, O’Laughlin M, Orvis J, Pagani I, Palaniappan K, Patel S M, Pearson M, Peterson J, Podar M, Pohl C, Pollard K S, Pop M, Priest M E, Proctor L M, Qin X, Raes J, Ravel J, Reid J G, Rho M, Rhodes R, Riehle K P, Rivera M C, Rodriguez-Mueller B, Rogers Y H, Ross M C, Russ C, Sanka R K, Sankar P, Fah Sathirapongsasuti J, Schloss J A, Schloss P D, Schmidt T M, Scholz M, Schriml L, Schubert A M, Segata N, Segre J A, Shannon W D, Sharp R R, Sharpton T J, Shenoy N, Sheth N U, Simone G A, Singh I, Smillie C S, Sobel J D, Sommer D D, Spicer P, Sutton G G, Sykes S M, Tabbaa D G, Thiagarajan M, Tomlinson C M, Torralba M, Treangen T J, Truty R M, Vishnivetskaya T A, Walker J, Wang L, Wang Z, Ward D V, Warren W, Watson M A, Wellington C, Wetterstrand K A, White J R, Wilczek-Boney K, Wu Y Q, Wylie K M, Wylie T, Yandava C, Ye L, Ye Y, Yooseph S, Youmans B P, Zhang L, Zhou Y, Zhu Y, Zoloth L, Zucker J D, Birren B W, Gibbs R A, Highlander S K, Methé B A, Nelson K E, Petrosino J F, Weinstock G M, Wilson R K, White O, and the (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402): 207–214
Hur K Y, Lee M S (2015). Gut Microbiota and Metabolic Disorders. Diabetes Metab J, 39(3): 198–203
Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, Fukase K, Inamura S, Kusumoto S, Hashimoto M, Foster S J, Moran A P, Fernandez-Luna J L, Nuñez G (2003). Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem, 278(8): 5509–5512
Jakobsson H E, Abrahamsson T R, Jenmalm M C, Harris K, Quince C, Jernberg C, Björkstén B, Engstrand L, Andersson A F (2014). Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut, 63(4): 559–566
Jovel J, Patterson J, Wang W, Hotte N, O’Keefe S, Mitchel T, Perry T, Kao D, Mason AL, Madsen KL, Wong GK (2016). Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics. Front Microbiol, 7:459, 1–17
Karlsson F H, Tremaroli V, Nookaew I, Bergström G, Behre C J, Fagerberg B, Nielsen J, Bäckhed F (2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 498(7452): 99–103
Khor B, Gardet A, Xavier R J (2011). Genetics and pathogenesis of inflammatory bowel disease. Nature, 474(7351): 307–317
Khoruts A, Dicksved J, Jansson J K, Sadowsky M J (2010). Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol, 44(5): 354–360
Koenig J E, Spor A, Scalfone N, Fricker A D, Stombaugh J, Knight R, Angenent L T, Ley R E (2011). Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA, 108(Suppl 1): 4578–4585
Komaroff A L (2017). The microbiome and risk for obesity and diabetes. JAMA, 317(4): 355–356
Kumar R, Yi N, Zhi D, Eipers P, Goldsmith K T, Dixon P, Crossman D K, Crowley M R, Lefkowitz E J, Rodriguez J M, Morrow C D (2017). Identification of donor microbe species that colonize and persist long term in the recipient after fecal transplant for recurrentClostridium difficile. NPJ Biofilms Microbiomes, 3(1): 12
Larsson E, Tremaroli V, Lee YS, Koren O, Nookaew I, Fricker A, Nielsen J, Ley RE, Bäckhed F (2012). Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut, 61(8):1124–31
Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M (2010). Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS ONE 5:e9085
Le Barz M, Anhê F F, Varin T V, Desjardins Y, Levy E, Roy D, Urdaci M C, Marette A (2015). Probiotics as Complementary Treatment for Metabolic Disorders. Diabetes Metab J, 39(4): 291–303
Lederberg J, McCray A T (2001). ‘Ome Sweet’ Omics- A Genealogical Treasury of Words Genealogical Treasury of Words. Scientist, 15(7): 8. Available at:{rs https://lhncbc.nlm.nih.gov/publication/lhncbc-2001-047 URL}
Leeuwenhoek A Van (1683). An abstract of a Letter from Antonie van Leeuwenhoek, Sep. 12, 1683. About Animals in the scrurf of the Teeth. Philosophical Transactions of the Royal Society of London, 14: 568–574.
Lepage P, Häsler R, Spehlmann M E, Rehman A, Zvirbliene A, Begun A, Ott S, Kupcinskas L, Doré J, Raedler A, Schreiber S (2011). Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology, 141(1): 227–236
Ley R E, Bäckhed F, Turnbaugh P, Lozupone C A, Knight R D, Gordon J I (2005). Obesity alters gut microbial ecology. Proc Natl Acad Sci USA, 102(31): 11070–11075
Ley R E, Turnbaugh P J, Klein S, Gordon J I (2006). Microbial ecology: human gut microbes associated with obesity. Nature, 444(7122): 1022–1023
Li X, Qin L (2005). Metagenomics-based drug discovery and marine microbial diversity. Trends Biotechnol, 23(11):539–43
Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, Van Immerseel F, Verbeke K, Ferrante M, Verhaegen J, Rutgeerts P, Vermeire S (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 63(8): 1275–1283
Marchesi J R (2010). Prokaryotic and eukaryotic diversity of the human gut. Adv Appl Microbiol, 72, 43–62
Matsuoka K, Kanai T (2015). The gut microbiota and inflammatory bowel disease. Semin Immunopathol, 37(1): 47–55
McIlroy J, Ianiro G, Mukhopadhya I, Hansen R, Hold G L (2018). Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management. Aliment Pharmacol Ther, 47(1): 26–42
Methé B A, Nelson K E, Pop M, Creasy H H, Giglio M G, Huttenhower C, Gevers D, Petrosino J F, Abubucker S, Badger J H, Chinwalla A T, Earl A M, FitzGerald M G, Fulton R S, Hallsworth-Pepin K, Lobos E A, Madupu R, Magrini V, Martin J C, Mitreva M, Muzny D M, Sodergren E J, Versalovic J, Wollam A M, Worley K C, Wortman J R, Young S K, Zeng Q, Aagaard K M, Abolude O O, Allen-Vercoe E, Alm E J, Alvarado L, Andersen G L, Anderson S, Appelbaum E, Arachchi H M, Armitage G, Arze C A, Ayvaz T, Baker C C, Begg L, Belachew T, Bhonagiri V, Bihan M, Blaser M J, Bloom T, Bonazzi V R, Brooks P, Buck G A, Buhay C J, Busam D A, Campbell J L, Canon S R, Cantarel B L, Chain P S, Chen I M, Chen L, Chhibba S, Chu K, Ciulla D M, Clemente J C, Clifton S W, Conlan S, Crabtree J, Cutting M A, Davidovics N J, Davis C C, DeSantis T Z, Deal C, Delehaunty K D, Dewhirst F E, Deych E, Ding Y, Dooling D J, Dugan S P, Dunne W Jr, Durkin A, Edgar R C, Erlich R L, Farmer C N, Farrell R M, Faust K, Feldgarden M, Felix V M, Fisher S, Fodor A A, Forney L, Foster L, Di Francesco V, Friedman J, Friedrich D C, Fronick C C, Fulton L L, Gao H, Garcia N, Giannoukos G, Giblin C, Giovanni M Y, Goldberg J M, Goll J, Gonzalez A, Griggs A, Gujja S, Haas B J, Hamilton H A, Harris E L, Hepburn T A, Herter B, Hoffmann D E, Holder M E, Howarth C, Huang K H, Huse S M, Izard J, Jansson J K, Jiang H, Jordan C, Joshi V, Katancik J A, Keitel W A, Kelley S T, Kells C, Kinder-Haake S, King N B, Knight R, Knights D, Kong H H, Koren O, Koren S, Kota K C, Kovar C L, Kyrpides N C, La Rosa P S, Lee S L, Lemon K P, Lennon N, Lewis C M, Lewis L, Ley R E, Li K, Liolios K, Liu B, Liu Y, Lo C C, Lozupone C A, Lunsford R, Madden T, Mahurkar A A, Mannon P J, Mardis E R, Markowitz V M, Mavrommatis K, McCorrison J M, McDonald D, McEwen J, McGuire A L, McInnes P, Mehta T, Mihindukulasuriya K A, Miller J R, Minx P J, Newsham I, Nusbaum C, O’Laughlin M, Orvis J, Pagani I, Palaniappan K, Patel S M, Pearson M, Peterson J, Podar M, Pohl C, Pollard K S, Priest M E, Proctor L M, Qin X, Raes J, Ravel J, Reid J G, Rho M, Rhodes R, Riehle K P, Rivera M C, Rodriguez-Mueller B, Rogers Y H, Ross M C, Russ C, Sanka R K, Sankar P, Sathirapongsasuti J, Schloss J A, Schloss P D, Schmidt T M, Scholz M, Schriml L, Schubert A M, Segata N, Segre J A, Shannon W D, Sharp R R, Sharpton T J, Shenoy N, Sheth N U, Simone G A, Singh I, Smillie C S, Sobel J D, Sommer D D, Sommer P, Sutton G G, Sykes S M, Tabbaa D G, Thiagarajan M, Tomlinson C M, Torralba M, Treangen T J, Truty R M, Vishnivetskaya T A, Walker J, Wang L, Wang Z, Ward D V, Warren W, Watson M A, Wellington C, Wetterstrand K A, White J R, Wilczek-Boney K, Wu Y Q, Wylie K M, Wylie T, Yandava C, Ye L, Ye Y, Yooseph S, Youmans B P, Zhang L, Zhou Y, Zhu Y, Zoloth L, Zucker J D, Birren B W, Gibbs R A, Highlander S K, Weinstock G M, Wilson R K, White O (2012). A framework for human microbiome. Nature, 486(7402): 215–S
Morgan X C, Tickle T L, Sokol H, Gevers D, Devaney K L, Ward D V, Reyes J A, Shah S A, LeLeiko N, Snapper S B, Bousvaros A, Korzenik J, Sands B E, Xavier R J, Huttenhower C (2012). Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol, 13(9): R79
O’Hara A M, Shanahan F (2006). The gut flora as a forgotten organ. EMBO Rep, 7(7): 688–693
Ogura Y, Bonen D K, Inohara N, Nicolae D L, Chen F F, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr R H, Achkar J P, Brant S R, Bayless T M, Kirschner B S, Hanauer S B, Nuñez G, Cho J H (2001). A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature, 411(6837): 603–606
Pace N R, Stahl D A, Lane D J, Olsen G J (1986). The Analysis of Natural Microbial Populations by Ribosomal RNA Sequences. Adv Microb Ecol, 9: 1–55
Palmer C, Bik E M, DiGiulio D B, Relman D A, Brown P O (2007). Development of the human infant intestinal microbiota. PLoS Biol, 5(7): e177
Park D Y, Ahn Y T, Park S H, Huh C S, Yoo S R, Yu R, Sung M K, McGregor R A, Choi M S (2013). Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in dietinduced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One, 8(3): e59470
Björkstén A E, Gosalbes M J, Friedrichs A, Knecht H, Artacho A, Eismann K, Otto W, Rojo D, Bargiela R, von Bergen M, Neulinger S C, Däumer C, Heinsen F A, Latorre A, Barbas C, Seifert J, dos Santos V M, Ott S J, Ferrer M, Moya A (2013). Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut, 62(11): 1591–1601
Perry R J, Peng L, Barry N A, Cline G W, Zhang D, Cardone R L, Petersen K F, Kibbey R G, Goodman A L, Shulman G I (2016). Acetate mediates a microbiome-brain—cell axis to promote metabolic syndrome. Nature, 534(7606): 213–217
The NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW, Lunsford RD, Wellington CR, Belachew T, Wright M, Giblin C, David H, Mills M, Salomon R, Mullins C, Akolkar B, Begg L, Davis C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H, Pontzer C, Portnoy M, Sayre MH, Starke-Reed P, Zakhari S, Read J, Watson B, Guyer M (2009). The NIH Human Microbiome Project. Genome Res, 19(12): 2317–2323
Petnicki-Ocwieja T, Hrncir T, Liu Y J, Biswas A, Hudcovic T, Tlaskalova-Hogenova H, Kobayashi K S (2009). Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci USA, 106(37): 15813–15818
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J(2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418): 55–60
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende D R, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J M, Hansen T, Le Paslier D, Linneberg A, Nielsen H B, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J; MetaHIT Consortium, Bork P, Ehrlich SD, Wang J, Antolin M, Artiguenave F, Blottiere H, Borruel N, Bruls T, Casellas F, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Forte M, Friss C, van de Guchte M, Guedon E, Haimet F, Jamet A, Juste C, Kaci G, Kleerebezem M, Knol J, Kristensen M, Layec S, Le Roux K, Leclerc M, Maguin E, Minardi RM, Oozeer R, Rescigno M, Sanchez N, Tims S, Torrejon T, Varela E, de Vos W, Winogradsky Y, Zoetendal E(2010).A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285): 59–65
Ridaura V K, Faith J J, Rey F E, Cheng J, Duncan A E, Kau A L, Ggriffin N W, Lombard V, Henrissat B, Bain JR, Muehlbauer M J, Ilkaveya O, Semenkovich C F, Funai K, Hayashi D K, Lyle B J, Martini M C, Ursell L K, Clemente J C, Treuren W V, Walters W A, Knight R, Newgard C B, Heath AC & Gordon JI (2013). Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice. Science, 341(6150): 1–22
Roberfroid M, Gibson G R, Hoyles L, McCartney A L, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco M J, Léotoing L, Wittrant Y, Delzenne N M, Cani P D, Neyrinck A M, Meheust A (2010). Prebiotic effects: metabolic and health benefits. Br J Nutr, 104(S2Suppl 2): S1–S63
Sartor R B (2008). Microbial influences in inflammatory bowel diseases. Gastroenterology, 134(2): 577–594
Savage D C (1977). Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol, 31(1): 107–133
Scanlan P D, Shanahan F, O’Mahony C, Marchesi J R (2006). Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease. J Clin Microbiol, 44(11): 3980–3988
Scott L J, Mohlke K L, Bonnycastle L L, Willer C J, Li Y, Duren W L, Erdos M R, Stringham H M, Chines P S, Jackson A U, Prokunina-Olsson L, Ding C J, Swift A J, Narisu N, Hu T, Pruim R, Xiao R, Li X Y, Conneely K N, Riebow N L, Sprau A G, Tong M, White P P, Hetrick K N, Barnhart M W, Bark C W, Goldstein J L, Watkins L, Xiang F, Saramies J, Buchanan T A, Watanabe R M, Valle T T, Kinnunen L, Abecasis G R, Pugh E W, Doheny K F, Bergman R N, Tuomilehto J, Collins F S, Boehnke M (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science, 316(5829): 1341–1345
Sharon I, Morowitz M J, Thomas B C, Costello E K, Relman D A, Banfield J F (2013). Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res, 23(1): 111–120
Sheehan D, Shanahan F (2017). The Gut Microbiota in Inflammatory Bowel Disease. Gastroenterol Clin North Am, 46(1): 143–154
Slattery J, MacFabe D F, Frye R E (2016). The significance of the enteric microbiome on the development of childhood disease: A review of prebiotic and probiotic therapies in disorders of childhood. Clin Med Insights Pediatr, 10: CMPed.S38338-107
Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán L G, Gratadoux J J, Blugeon S, Bridonneau C, Furet J P, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière H M, Doré J, Marteau P, Seksik P, Langella P (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA, 105(43): 16731–16736
Sokol H, Seksik P (2010). The intestinal microbiota in inflammatory bowel diseases: time to connect with the host. Curr Opin Gastroenterol, 26(4): 327–331
Tang W H W, Kitai T, Hazen S L (2017). Gut Microbiota in Cardiovascular Health and Disease. Circ Res, 120(7): 1183–1196
Tong M, Li X, Wegener Parfrey L, Roth B, Ippoliti A, Wei B, Borneman J, McGovern D P, Frank D N, Li E, Horvath S, Knight R, Braun J (2013). A modular organization of the human intestinal mucosal microbiota and its association with inflammatory bowel disease. PLoS One, 8(11): e80702
Turnbaugh P J, Bäckhed F, Fulton L, Gordon J I (2008). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe, 3(4): 213–223
Turnbaugh P J, Ley R E, Mahowald M A, Magrini V, Mardis E R, Gordon J I (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122): 1027–1131
Tvede M, Rask-Madsen J (1989). Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet, 333(8648): 1156–1160
Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte R S, Bartelsman J F, Dallinga-Thie G M, Ackermans M T, Serlie M J, Oozeer R, Derrien M, Druesne A, Van Hylckama Vlieg J E, Bloks V W, Groen A K, Heilig H G, Zoetendal E G, Stroes E S, de Vos WM, Hoekstra J B, Nieuwdorp M (2012). Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 143(4): 913–6.
Walsh C J, Guinane C M, O’Toole P W, Cotter P D (2014). Beneficial modulation of the gut microbiota. FEBS Lett, 588(22): 4120–4130
Wolf K J, Lorenz R G (2012). Gut Microbiota and Obesity. Curr Obes Rep, 1(1): 1–8
Woodworth M H, Carpentieri C, Sitchenko K L, Kraft C S (2017). Challenges in fecal donor selection and screening for fecal microbiota transplantation: A review. Gut Microbes, 8(3): 225–237
Yadav H, Lee J H, Lloyd J, Walter P, Rane S G (2013). Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem, 288(35): 25088–97
Zhu W, Winter M G, Byndloss M X, Spiga L, Duerkop B A, Hughes E R, Büttner L, de Lima Romão E, Behrendt C L, Lopez C A, Sifuentes-Dominguez L, Huff-Hardy K, Wilson R P, Gillis C C, Tükel Ç, Koh A Y, Burstein E, Hooper L V, Bäumler A J, Winter S E (2018). Precision editing of the gut microbiota ameliorates colitis. Nature, 553(7687): 208–211
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chattopadhyay, A., Mythili, S. The journey of gut microbiome – An introduction and its influence on metabolic disorders. Front. Biol. 13, 327–341 (2018). https://doi.org/10.1007/s11515-018-1490-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11515-018-1490-6


